Parallel island-based multiobjectivised memetic algorithms for a 2D packing problem

Author(s):  
Carlos Segura ◽  
Eduardo Segredo ◽  
Coromoto León
Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 506
Author(s):  
Jorge Daniel Mello-Román ◽  
Adolfo Hernández ◽  
Julio César Mello-Román

Kernel partial least squares regression (KPLS) is a non-linear method for predicting one or more dependent variables from a set of predictors, which transforms the original datasets into a feature space where it is possible to generate a linear model and extract orthogonal factors also called components. A difficulty in implementing KPLS regression is determining the number of components and the kernel function parameters that maximize its performance. In this work, a method is proposed to improve the predictive ability of the KPLS regression by means of memetic algorithms. A metaheuristic tuning procedure is carried out to select the number of components and the kernel function parameters that maximize the cumulative predictive squared correlation coefficient, an overall indicator of the predictive ability of KPLS. The proposed methodology led to estimate optimal parameters of the KPLS regression for the improvement of its predictive ability.


Author(s):  
Taesung HWANG ◽  
Minho LEE ◽  
Chungwon LEE ◽  
Seungmo KANG

Large facilities in urban areas, such as storage facilities, distribution centers, schools, department stores, or public service centers, typically generate high volumes of accessing traffic, causing congestion and becoming major sources of greenhouse gas (GHG) emission. In conventional facility-location models, only facility construction costs and fixed transportation costs connecting customers and facilities are included, without consideration of traffic congestion and the subsequent GHG emission costs. This study proposes methods to find high-demand facility locations with incorporation of the traffic congestion and GHG emission costs incurred by both existing roadway traffic and facility users into the total cost. Tabu search and memetic algorithms were developed and tested with a conventional genetic algorithm in a variety of networks to solve the proposed mathematical model. A case study to determine the total number and locations of community service centers under multiple scenarios in Incheon City is then presented. The results demonstrate that the proposed approach can significantly reduce both the transportation and GHG emission costs compared to the conventional facility-location model. This effort will be useful for decision makers and transportation planners in the analysis of network-wise impacts of traffic congestion and vehicle emission when deciding the locations of high demand facilities in urban areas.


Sign in / Sign up

Export Citation Format

Share Document