Tuning parameters of the expected reciprocal rank

Author(s):  
Yury Logachev ◽  
Lidia Grauer ◽  
Pavel Serdyukov
TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 4-11
Author(s):  
MOHAMED CHBEL ◽  
LUC LAPERRIÈRE

Pulp and paper processes frequently present nonlinear behavior, which means that process dynam-ics change with the operating points. These nonlinearities can challenge process control. PID controllers are the most popular controllers because they are simple and robust. However, a fixed set of PID tuning parameters is gen-erally not sufficient to optimize control of the process. Problems related to nonlinearities such as sluggish or oscilla-tory response can arise in different operating regions. Gain scheduling is a potential solution. In processes with mul-tiple control objectives, the control strategy must further evaluate loop interactions to decide on the pairing of manipulated and controlled variables that minimize the effect of such interactions and hence, optimize controller’s performance and stability. Using the CADSIM Plus™ commercial simulation software, we developed a Jacobian sim-ulation module that enables automatic bumps on the manipulated variables to calculate process gains at different operating points. These gains can be used in controller tuning. The module also enables the control system designer to evaluate loop interactions in a multivariable control system by calculating the Relative Gain Array (RGA) matrix, of which the Jacobian is an essential part.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Truong Khanh Linh Dang ◽  
Thach Nguyen ◽  
Michael Habeck ◽  
Mehmet Gültas ◽  
Stephan Waack

Abstract Background Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the relative movement of rigid domains against each other. Despite previous efforts, there is a need to develop new domain segmentation algorithms that are capable of analysing the entire structure database efficiently and do not require the choice of protein-dependent tuning parameters such as the number of rigid domains. Results We develop a graph-based method for detecting rigid domains in proteins. Structural information from multiple conformational states is represented by a graph whose nodes correspond to amino acids. Graph clustering algorithms allow us to reduce the graph and run the Viterbi algorithm on the associated line graph to obtain a segmentation of the input structures into rigid domains. In contrast to many alternative methods, our approach does not require knowledge about the number of rigid domains. Moreover, we identified default values for the algorithmic parameters that are suitable for a large number of conformational ensembles. We test our algorithm on examples from the DynDom database and illustrate our method on various challenging systems whose structural transitions have been studied extensively. Conclusions The results strongly suggest that our graph-based algorithm forms a novel framework to characterize structural transitions in proteins via detecting their rigid domains. The web server is available at http://azifi.tz.agrar.uni-goettingen.de/webservice/.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Ogbonnaya Anicho ◽  
Philip B. Charlesworth ◽  
Gurvinder S. Baicher ◽  
Atulya K. Nagar

AbstractThis work analyses the performance of Reinforcement Learning (RL) versus Swarm Intelligence (SI) for coordinating multiple unmanned High Altitude Platform Stations (HAPS) for communications area coverage. It builds upon previous work which looked at various elements of both algorithms. The main aim of this paper is to address the continuous state-space challenge within this work by using partitioning to manage the high dimensionality problem. This enabled comparing the performance of the classical cases of both RL and SI establishing a baseline for future comparisons of improved versions. From previous work, SI was observed to perform better across various key performance indicators. However, after tuning parameters and empirically choosing suitable partitioning ratio for the RL state space, it was observed that the SI algorithm still maintained superior coordination capability by achieving higher mean overall user coverage (about 20% better than the RL algorithm), in addition to faster convergence rates. Though the RL technique showed better average peak user coverage, the unpredictable coverage dip was a key weakness, making SI a more suitable algorithm within the context of this work.


Risks ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 70
Author(s):  
Małgorzata Just ◽  
Krzysztof Echaust

The appropriate choice of a threshold level, which separates the tails of the probability distribution of a random variable from its middle part, is considered to be a very complex and challenging task. This paper provides an empirical study on various methods of the optimal tail selection in risk measurement. The results indicate which method may be useful in practice for investors and financial and regulatory institutions. Some methods that perform well in simulation studies, based on theoretical distributions, may not perform well when real data are in use. We analyze twelve methods with different parameters for forty-eight world indices using returns from the period of 2000–Q1 2020 and four sub-periods. The research objective is to compare the methods and to identify those which can be recognized as useful in risk measurement. The results suggest that only four tail selection methods, i.e., the Path Stability algorithm, the minimization of the Asymptotic Mean Squared Error approach, the automated Eyeball method with carefully selected tuning parameters and the Hall single bootstrap procedure may be useful in practical applications.


2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Jesús García ◽  
Iván Portnoy ◽  
Ricardo Vasquez Padilla ◽  
Marco E. Sanjuan

Variation in direct solar radiation is one of the main disturbances that any solar system must handle to maintain efficiency at acceptable levels. As known, solar radiation profiles change due to earth's movements. Even though this change is not manipulable, its behavior is predictable. However, at ground level, direct solar radiation mainly varies due to the effect of clouds, which is a complex phenomenon not easily predictable. In this paper, dynamic solar radiation time series in a two-dimensional (2D) spatial domain are obtained using a biomimetic cloud-shading model. The model is tuned and compared against available measurement time series. The procedure uses an objective function based on statistical indexes that allow extracting the most important characteristics of an actual set of curves. Then, a multi-objective optimization algorithm finds the tuning parameters of the model that better fit data. The results showed that it is possible to obtain responses similar to real direct solar radiation transients using the biomimetic model, which is useful for other studies such as testing control strategies in solar thermal plants.


2015 ◽  
Vol 25 (07) ◽  
pp. 1540005
Author(s):  
Ilya Prokin ◽  
Ivan Tyukin ◽  
Victor Kazantsev

The work investigates the influence of spike-timing dependent plasticity (STDP) mechanisms on the dynamics of two synaptically coupled neurons driven by additive external noise. In this setting, the noise signal models synaptic inputs that the pair receives from other neurons in a larger network. We show that in the absence of STDP feedbacks the pair of neurons exhibit oscillations and intermittent synchronization. When the synapse connecting the neurons is supplied with a phase selective feedback mechanism simulating STDP, induced dynamics of spikes in the coupled system resembles a phase locked mode with time lags between spikes oscillating about a specific value. This value, as we show by extensive numerical simulations, can be set arbitrary within a broad interval by tuning parameters of the STDP feedback.


2014 ◽  
Vol 7 (3) ◽  
pp. 65-79
Author(s):  
Ibrahem S. Fatah

In this paper, a Proportional-Integral-Derivative (PID) controller of DC motor is designed by using particle swarm optimization (PSO) strategy for formative optimal PID controller tuning parameters. The proposed approach has superior feature, including easy implementation, stable convergence characteristics and very good computational performances efficiency. The DC Motor Scheduling PID-PSO controller is modeled in MATLAB environment. Comparing with conventional PID controller using Genetic Algorithm, the planned method is more proficient in improving the speed loop response stability, the steady state error is reduced, the rising time is perfected and the change of the required input do not affect the performances of driving motor with no overtaking.


Sign in / Sign up

Export Citation Format

Share Document