High level adaptive fusion approach

Author(s):  
Wadii Boulila ◽  
Karim S. Ettabaa ◽  
Imed Riadh Farah ◽  
Basel Solaiman
Author(s):  
B. Tavus ◽  
S. Kocaman ◽  
H. A. Nefeslioglu ◽  
C. Gokceoglu

Abstract. The frequency of flood events has increased in recent years most probably due to the climate change. Flood mapping is thus essential for flood modelling, hazard and risk analyses and can be performed by using the data of optical and microwave satellite sensors. Although optical imagery-based flood analysis methods have been often used for the flood assessments before, during and after the event; they have the limitation of cloud coverage. With the increasing temporal availability and spatial resolution of SAR (Synthetic Aperture Radar) satellite sensors, they became popular in data provision for flood detection. On the other hand, their processing may require high level of expertise and visual interpretation of the data is also difficult. In this study, a fusion approach for Sentinel-1 SAR and Sentinel-2 optical data for flood extent mapping was applied for the flood event occurred on August 8th, 2018, in Ordu Province of Turkey. The features obtained from Sentinel-1 and Sentinel-2 processing results were fused in random forest supervised classifier. The results show that Sentinel-2 optical data ease the training sample selection for the flooded areas. In addition, the settlement areas can be extracted from the optical data better. However, the Sentinel-2 data suffer from clouds which prevent from mapping of the full flood extent, which can be carried out with the Sentinel-1 data. Different feature combinations were evaluated and the results were assessed visually. The results are provided in this paper.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Ruochen Liu ◽  
Han Wang ◽  
Jinwu Zhang ◽  
Shuangshuang Gu ◽  
Jianzhong Sun

Electrostatic monitoring is a unique and rapid developing technique applied in the prognostics and health management of the tribological system based on electrostatic charging and sensing phenomenon. It has considerable advantages in condition monitoring of tribo-contacts with high sensitivity and resolution. Unfortunately, the monitoring result can be affected due to the switch of operating conditions that reduces its accuracy. This paper presents a dynamic adaptive fusion approach, moving window local outlier factor based on electrostatic features to overcome the influence. Life cycle experiments of rolling bearings and railcar gearbox were carried out on an electrostatic monitoring platform. The MWLOF method was used to extract and analyze the experimental data, combined with the Pauta criterion to judge wear faults quantitatively, and compare with other feature extraction results. It is verified that the proposed method can overcome the influence of changes in working conditions on the monitoring results, improve the monitoring sensitivity, and provide an accurate reference for friction and wear faults.


Author(s):  
Shanna Schönhals ◽  
Meiko Steen ◽  
Peter Hecker

Wake vortices and the prevention of wake vortex encounters are both an issue of safety and capacity in today’s air transportation system. Current wake vortex separations are safe but also very conservative and thus have an adverse effect on capacity of airports. This article deals with the concept of fused wake vortex prediction and detection with the objective to deliver wake vortex strength and position with a high level of accuracy and reliability. The collaboration approach aims at fusion of models and sensors available for forecast and detection of hazardous wake turbulence in order to improve the overall system performance using the complementary capabilities of the single components. Different methods of coupling models with measurements are introduced and resulting the aspect of requirements for the prediction model and measurement sensor is presented. The implementation of an error-state system is presented and compared to sole prediction and sole sensor results. The results indicate that the fusion approach delivers benefits like reduced uncertainty of prediction and increased availability of detection and thus has the ability to increase airport and air space capacity while maintaining or even improving current wake vortex safety.


2019 ◽  
Vol 11 (22) ◽  
pp. 2691 ◽  
Author(s):  
Gang He ◽  
Jiaping Zhong ◽  
Jie Lei ◽  
Yunsong Li ◽  
Weiying Xie

Hyperspectral (HS) imaging is conducive to better describing and understanding the subtle differences in spectral characteristics of different materials due to sufficient spectral information compared with traditional imaging systems. However, it is still challenging to obtain high resolution (HR) HS images in both the spectral and spatial domains. Different from previous methods, we first propose spectral constrained adversarial autoencoder (SCAAE) to extract deep features of HS images and combine with the panchromatic (PAN) image to competently represent the spatial information of HR HS images, which is more comprehensive and representative. In particular, based on the adversarial autoencoder (AAE) network, the SCAAE network is built with the added spectral constraint in the loss function so that spectral consistency and a higher quality of spatial information enhancement can be ensured. Then, an adaptive fusion approach with a simple feature selection rule is induced to make full use of the spatial information contained in both the HS image and PAN image. Specifically, the spatial information from two different sensors is introduced into a convex optimization equation to obtain the fusion proportion of the two parts and estimate the generated HR HS image. By analyzing the results from the experiments executed on the tested data sets through different methods, it can be found that, in CC, SAM, and RMSE, the performance of the proposed algorithm is improved by about 1.42%, 13.12%, and 29.26% respectively on average which is preferable to the well-performed method HySure. Compared to the MRA-based method, the improvement of the proposed method in in the above three indexes is 17.63%, 0.83%, and 11.02%, respectively. Moreover, the results are 0.87%, 22.11%, and 20.66%, respectively, better than the PCA-based method, which fully illustrated the superiority of the proposed method in spatial information preservation. All the experimental results demonstrate that the proposed method is superior to the state-of-the-art fusion methods in terms of subjective and objective evaluations.


Author(s):  
David P. Bazett-Jones ◽  
Mark L. Brown

A multisubunit RNA polymerase enzyme is ultimately responsible for transcription initiation and elongation of RNA, but recognition of the proper start site by the enzyme is regulated by general, temporal and gene-specific trans-factors interacting at promoter and enhancer DNA sequences. To understand the molecular mechanisms which precisely regulate the transcription initiation event, it is crucial to elucidate the structure of the transcription factor/DNA complexes involved. Electron spectroscopic imaging (ESI) provides the opportunity to visualize individual DNA molecules. Enhancement of DNA contrast with ESI is accomplished by imaging with electrons that have interacted with inner shell electrons of phosphorus in the DNA backbone. Phosphorus detection at this intermediately high level of resolution (≈lnm) permits selective imaging of the DNA, to determine whether the protein factors compact, bend or wrap the DNA. Simultaneously, mass analysis and phosphorus content can be measured quantitatively, using adjacent DNA or tobacco mosaic virus (TMV) as mass and phosphorus standards. These two parameters provide stoichiometric information relating the ratios of protein:DNA content.


Author(s):  
J. S. Wall

The forte of the Scanning transmission Electron Microscope (STEM) is high resolution imaging with high contrast on thin specimens, as demonstrated by visualization of single heavy atoms. of equal importance for biology is the efficient utilization of all available signals, permitting low dose imaging of unstained single molecules such as DNA.Our work at Brookhaven has concentrated on: 1) design and construction of instruments optimized for a narrow range of biological applications and 2) use of such instruments in a very active user/collaborator program. Therefore our program is highly interactive with a strong emphasis on producing results which are interpretable with a high level of confidence.The major challenge we face at the moment is specimen preparation. The resolution of the STEM is better than 2.5 A, but measurements of resolution vs. dose level off at a resolution of 20 A at a dose of 10 el/A2 on a well-behaved biological specimen such as TMV (tobacco mosaic virus). To track down this problem we are examining all aspects of specimen preparation: purification of biological material, deposition on the thin film substrate, washing, fast freezing and freeze drying. As we attempt to improve our equipment/technique, we use image analysis of TMV internal controls included in all STEM samples as a monitor sensitive enough to detect even a few percent improvement. For delicate specimens, carbon films can be very harsh-leading to disruption of the sample. Therefore we are developing conducting polymer films as alternative substrates, as described elsewhere in these Proceedings. For specimen preparation studies, we have identified (from our user/collaborator program ) a variety of “canary” specimens, each uniquely sensitive to one particular aspect of sample preparation, so we can attempt to separate the variables involved.


2020 ◽  
Vol 29 (4) ◽  
pp. 738-761
Author(s):  
Tess K. Koerner ◽  
Melissa A. Papesh ◽  
Frederick J. Gallun

Purpose A questionnaire survey was conducted to collect information from clinical audiologists about rehabilitation options for adult patients who report significant auditory difficulties despite having normal or near-normal hearing sensitivity. This work aimed to provide more information about what audiologists are currently doing in the clinic to manage auditory difficulties in this patient population and their views on the efficacy of recommended rehabilitation methods. Method A questionnaire survey containing multiple-choice and open-ended questions was developed and disseminated online. Invitations to participate were delivered via e-mail listservs and through business cards provided at annual audiology conferences. All responses were anonymous at the time of data collection. Results Responses were collected from 209 participants. The majority of participants reported seeing at least one normal-hearing patient per month who reported significant communication difficulties. However, few respondents indicated that their location had specific protocols for the treatment of these patients. Counseling was reported as the most frequent rehabilitation method, but results revealed that audiologists across various work settings are also successfully starting to fit patients with mild-gain hearing aids. Responses indicated that patient compliance with computer-based auditory training methods was regarded as low, with patients generally preferring device-based rehabilitation options. Conclusions Results from this questionnaire survey strongly suggest that audiologists frequently see normal-hearing patients who report auditory difficulties, but that few clinicians are equipped with established protocols for diagnosis and management. While many feel that mild-gain hearing aids provide considerable benefit for these patients, very little research has been conducted to date to support the use of hearing aids or other rehabilitation options for this unique patient population. This study reveals the critical need for additional research to establish evidence-based practice guidelines that will empower clinicians to provide a high level of clinical care and effective rehabilitation strategies to these patients.


Sign in / Sign up

Export Citation Format

Share Document