Nearest Neighbour Join with Groups and Predicates

Author(s):  
Francesco Cafagna ◽  
Michael H. Böhlen ◽  
Annelies Bracher
2004 ◽  
Vol 6 (6) ◽  
pp. 728-749 ◽  
Author(s):  
Christian B�hm ◽  
Florian Krebs

Author(s):  
David Cockayne ◽  
David McKenzie

The technique of Electron Reduced Density Function (RDF) analysis has ben developed into a rapid analytical tool for the analysis of small volumes of amorphous or polycrystalline materials. The energy filtered electron diffraction pattern is collected to high scattering angles (currendy to s = 2 sinθ/λ = 6.5 Å-1) by scanning the selected area electron diffraction pattern across the entrance aperture to a GATAN parallel energy loss spectrometer. The diffraction pattern is then converted to a reduced density function, G(r), using mathematical procedures equivalent to those used in X-ray and neutron diffraction studies.Nearest neighbour distances accurate to 0.01 Å are obtained routinely, and bond distortions of molecules can be determined from the ratio of first to second nearest neighbour distances. The accuracy of coordination number determinations from polycrystalline monatomic materials (eg Pt) is high (5%). In amorphous systems (eg carbon, silicon) it is reasonable (10%), but in multi-element systems there are a number of problems to be overcome; to reduce the diffraction pattern to G(r), the approximation must be made that for all elements i,j in the system, fj(s) = Kji fi,(s) where Kji is independent of s.


Author(s):  
Violet Bassey Eneyo

This paper examines the distribution of hospitality services in Uyo Urban, Nigeria. GIS method was the primary tool used for data collection. A global positioning system (GPS) Garmin 60 model was used in tracking the location of 102 hospitality services in the study area. One hypothesis was stated and tested using the nearest neighbour analysis. The finding shows evidence of clustering of the various hospitality services. The tested hypothesis further indicated that hospitality services clustered in areas that guarantee a sustainable level of patronage to maximize profit. Thus, the hospitality services clustered in selected streets in the metropolis while limited numbers were found outside the city’s central area.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Marius de Leeuw ◽  
Chiara Paletta ◽  
Anton Pribytok ◽  
Ana L. Retore ◽  
Alessandro Torrielli

Abstract In this paper we first demonstrate explicitly that the new models of integrable nearest-neighbour Hamiltonians recently introduced in PRL 125 (2020) 031604 [36] satisfy the so-called free fermion condition. This both implies that all these models are amenable to reformulations as free fermion theories, and establishes the universality of this condition. We explicitly recast the transfer matrix in free fermion form for arbitrary number of sites in the 6-vertex sector, and on two sites in the 8-vertex sector, using a Bogoliubov transformation. We then put this observation to use in lower-dimensional instances of AdS/CFT integrable R-matrices, specifically pure Ramond-Ramond massless and massive AdS3, mixed-flux relativistic AdS3 and massless AdS2. We also attack the class of models akin to AdS5 with our free fermion machinery. In all cases we use the free fermion realisation to greatly simplify and reinterpret a wealth of known results, and to provide a very suggestive reformulation of the spectral problem in all these situations.


2020 ◽  
Vol 15 (S359) ◽  
pp. 40-41
Author(s):  
L. M. Izuti Nakazono ◽  
C. Mendes de Oliveira ◽  
N. S. T. Hirata ◽  
S. Jeram ◽  
A. Gonzalez ◽  
...  

AbstractWe present a machine learning methodology to separate quasars from galaxies and stars using data from S-PLUS in the Stripe-82 region. In terms of quasar classification, we achieved 95.49% for precision and 95.26% for recall using a Random Forest algorithm. For photometric redshift estimation, we obtained a precision of 6% using k-Nearest Neighbour.


2021 ◽  
Vol 82 (1-2) ◽  
Author(s):  
Lena Collienne ◽  
Alex Gavryushkin

AbstractMany popular algorithms for searching the space of leaf-labelled (phylogenetic) trees are based on tree rearrangement operations. Under any such operation, the problem is reduced to searching a graph where vertices are trees and (undirected) edges are given by pairs of trees connected by one rearrangement operation (sometimes called a move). Most popular are the classical nearest neighbour interchange, subtree prune and regraft, and tree bisection and reconnection moves. The problem of computing distances, however, is $${\mathbf {N}}{\mathbf {P}}$$ N P -hard in each of these graphs, making tree inference and comparison algorithms challenging to design in practice. Although anked phylogenetic trees are one of the central objects of interest in applications such as cancer research, immunology, and epidemiology, the computational complexity of the shortest path problem for these trees remained unsolved for decades. In this paper, we settle this problem for the ranked nearest neighbour interchange operation by establishing that the complexity depends on the weight difference between the two types of tree rearrangements (rank moves and edge moves), and varies from quadratic, which is the lowest possible complexity for this problem, to $${\mathbf {N}}{\mathbf {P}}$$ N P -hard, which is the highest. In particular, our result provides the first example of a phylogenetic tree rearrangement operation for which shortest paths, and hence the distance, can be computed efficiently. Specifically, our algorithm scales to trees with tens of thousands of leaves (and likely hundreds of thousands if implemented efficiently).


Sign in / Sign up

Export Citation Format

Share Document