Research on Code Plagiarism Detection Model Based on Random Forest and Gradient Boosting Decision Tree

Author(s):  
Huang Qiubo ◽  
Tang Jingdong ◽  
Fang Guozheng
2021 ◽  
Vol 11 (4) ◽  
pp. 1378
Author(s):  
Seung Hyun Lee ◽  
Jaeho Son

It has been pointed out that the act of carrying a heavy object that exceeds a certain weight by a worker at a construction site is a major factor that puts physical burden on the worker’s musculoskeletal system. However, due to the nature of the construction site, where there are a large number of workers simultaneously working in an irregular space, it is difficult to figure out the weight of the object carried by the worker in real time or keep track of the worker who carries the excess weight. This paper proposes a prototype system to track the weight of heavy objects carried by construction workers by developing smart safety shoes with FSR (Force Sensitive Resistor) sensors. The system consists of smart safety shoes with sensors attached, a mobile device for collecting initial sensing data, and a web-based server computer for storing, preprocessing and analyzing such data. The effectiveness and accuracy of the weight tracking system was verified through the experiments where a weight was lifted by each experimenter from +0 kg to +20 kg in 5 kg increments. The results of the experiment were analyzed by a newly developed machine learning based model, which adopts effective classification algorithms such as decision tree, random forest, gradient boosting algorithm (GBM), and light GBM. The average accuracy classifying the weight by each classification algorithm showed similar, but high accuracy in the following order: random forest (90.9%), light GBM (90.5%), decision tree (90.3%), and GBM (89%). Overall, the proposed weight tracking system has a significant 90.2% average accuracy in classifying how much weight each experimenter carries.


Chronic Kidney Disease (CKD) is a worldwide concern that influences roughly 10% of the grown-up population on the world. For most of the people the early diagnosis of CKD is often not possible. Therefore, the utilization of present-day Computer aided supported strategies is important to help the conventional CKD finding framework to be progressively effective and precise. In this project, six modern machine learning techniques namely Multilayer Perceptron Neural Network, Support Vector Machine, Naïve Bayes, K-Nearest Neighbor, Decision Tree, Logistic regression were used and then to enhance the performance of the model Ensemble Algorithms such as ADABoost, Gradient Boosting, Random Forest, Majority Voting, Bagging and Weighted Average were used on the Chronic Kidney Disease dataset from the UCI Repository. The model was tuned finely to get the best hyper parameters to train the model. The performance metrics used to evaluate the model was measured using Accuracy, Precision, Recall, F1-score, Mathew`s Correlation Coefficient and ROC-AUC curve. The experiment was first performed on the individual classifiers and then on the Ensemble classifiers. The ensemble classifier like Random Forest and ADABoost performed better with 100% Accuracy, Precision and Recall when compared to the individual classifiers with 99.16% accuracy, 98.8% Precision and 100% Recall obtained from Decision Tree Algorithm


2021 ◽  
Vol 11 ◽  
Author(s):  
Yanjie Zhao ◽  
Rong Chen ◽  
Ting Zhang ◽  
Chaoyue Chen ◽  
Muhetaer Muhelisa ◽  
...  

BackgroundDifferential diagnosis between benign and malignant breast lesions is of crucial importance relating to follow-up treatment. Recent development in texture analysis and machine learning may lead to a new solution to this problem.MethodThis current study enrolled a total number of 265 patients (benign breast lesions:malignant breast lesions = 71:194) diagnosed in our hospital and received magnetic resonance imaging between January 2014 and August 2017. Patients were randomly divided into the training group and validation group (4:1), and two radiologists extracted their texture features from the contrast-enhanced T1-weighted images. We performed five different feature selection methods including Distance correlation, Gradient Boosting Decision Tree (GBDT), least absolute shrinkage and selection operator (LASSO), random forest (RF), eXtreme gradient boosting (Xgboost) and five independent classification models were built based on Linear discriminant analysis (LDA) algorithm.ResultsAll five models showed promising results to discriminate malignant breast lesions from benign breast lesions, and the areas under the curve (AUCs) of receiver operating characteristic (ROC) were all above 0.830 in both training and validation groups. The model with a better discriminating ability was the combination of LDA + gradient boosting decision tree (GBDT). The sensitivity, specificity, AUC, and accuracy in the training group were 0.814, 0.883, 0.922, and 0.868, respectively; LDA + random forest (RF) also suggests promising results with the AUC of 0.906 in the training group.ConclusionThe evidence of this study, while preliminary, suggested that a combination of MRI texture analysis and LDA algorithm could discriminate benign breast lesions from malignant breast lesions. Further multicenter researches in this field would be of great help in the validation of the result.


Author(s):  
Upasana Mukherjee ◽  
Vandana Thakkar ◽  
Shawni Dutta ◽  
Utsab Mukherjee ◽  
Samir Kumar Bandyopadhyay

The growth of regularly generated data from many financial activities has significant implications for every corner of financial modelling. This study has investigated the utilization of these continuous growing data by a means of an automated process. The automated process can be developed by using Machine learning based techniques that analyze the data and gain experience from the underlying data. Different important domains of financial fields such as Credit card fraud detection, bankruptcy detection, loan default prediction, investment prediction, marketing and many more can be modelled by implementing machine learning methods. Among several machine learning based techniques, the use of parametric and non-parametric based methods are approached by this research. Two parametric models namely Logistic Regression, Gaussian Naive Bayes models and two non-parametric methods such as Random Forest, Decision Tree are implemented in this paper. All the mentioned models are developed and implemented in the field of Credit card fraud detection, bankruptcy detection, loan default prediction. In each of the aforementioned cases, the comparative study among the classification techniques is drawn and the best model is identified. The performance of each classifier on each considered domain is evaluated by various performance metrics such as accuracy, F1-score and mean squared error. In the credit card fraud detection model the decision tree classifier performs the best with an accuracy of 99.1% and, in the loan default prediction and bankruptcy detection model, the random forest classifier gives the best accuracy of  97% and 96.84% respectively.


2021 ◽  
Vol 12 (2) ◽  
pp. 28-55
Author(s):  
Fabiano Rodrigues ◽  
Francisco Aparecido Rodrigues ◽  
Thelma Valéria Rocha Rodrigues

Este estudo analisa resultados obtidos com modelos de machine learning para predição do sucesso de startups. Como proxy de sucesso considera-se a perspectiva do investidor, na qual a aquisição da startup ou realização de IPO (Initial Public Offering) são formas de recuperação do investimento. A revisão da literatura aborda startups e veículos de financiamento, estudos anteriores sobre predição do sucesso de startups via modelos de machine learning, e trade-offs entre técnicas de machine learning. Na parte empírica, foi realizada uma pesquisa quantitativa baseada em dados secundários oriundos da plataforma americana Crunchbase, com startups de 171 países. O design de pesquisa estabeleceu como filtro startups fundadas entre junho/2010 e junho/2015, e uma janela de predição entre junho/2015 e junho/2020 para prever o sucesso das startups. A amostra utilizada, após etapa de pré-processamento dos dados, foi de 18.571 startups. Foram utilizados seis modelos de classificação binária para a predição: Regressão Logística, Decision Tree, Random Forest, Extreme Gradiente Boosting, Support Vector Machine e Rede Neural. Ao final, os modelos Random Forest e Extreme Gradient Boosting apresentaram os melhores desempenhos na tarefa de classificação. Este artigo, envolvendo machine learning e startups, contribui para áreas de pesquisa híbridas ao mesclar os campos da Administração e Ciência de Dados. Além disso, contribui para investidores com uma ferramenta de mapeamento inicial de startups na busca de targets com maior probabilidade de sucesso.   


2021 ◽  
Vol 9 ◽  
Author(s):  
Shibao Wang ◽  
Jianqi Zhuang ◽  
Jia Zheng ◽  
Hongyu Fan ◽  
Jiaxu Kong ◽  
...  

Landslides are widely distributed worldwide and often result in tremendous casualties and economic losses, especially in the Loess Plateau of China. Taking Wuqi County in the hinterland of the Loess Plateau as the research area, using Bayesian hyperparameters to optimize random forest and extreme gradient boosting decision trees model for landslide susceptibility mapping, and the two optimized models are compared. In addition, 14 landslide influencing factors are selected, and 734 landslides are obtained according to field investigation and reports from literals. The landslides were randomly divided into training data (70%) and validation data (30%). The hyperparameters of the random forest and extreme gradient boosting decision tree models were optimized using a Bayesian algorithm, and then the optimal hyperparameters are selected for landslide susceptibility mapping. Both models were evaluated and compared using the receiver operating characteristic curve and confusion matrix. The results show that the AUC validation data of the Bayesian optimized random forest and extreme gradient boosting decision tree model are 0.88 and 0.86, respectively, which showed an improvement of 4 and 3%, indicating that the prediction performance of the two models has been improved. However, the random forest model has a higher predictive ability than the extreme gradient boosting decision tree model. Thus, hyperparameter optimization is of great significance in the improvement of the prediction accuracy of the model. Therefore, the optimized model can generate a high-quality landslide susceptibility map.


Sign in / Sign up

Export Citation Format

Share Document