Quantitative Evaluation of Machine Learning Explanations: A Human-Grounded Benchmark

Author(s):  
Sina Mohseni ◽  
Jeremy E Block ◽  
Eric Ragan
2020 ◽  
Author(s):  
Sarah Trimble ◽  
Allison Penko

<p>Modelling changes in nearshore bathymetry (<10m depth) is complicated by the nonlinear interactions between sediment, waves, and currents that can cause complex flow and transport patterns such as rip currents. Rip currents are of particular interest because of their implications for both sediment transport and beach-goer safety. An active area of research is using remote sensing (e.g., radar, video imagery) to estimate the existence and location of rip currents. Radar actively measures surface flow directions at high resolutions, however, the equipment can be expensive and difficult to set up. In contrast, video cameras are less expensive and more accessible, but can only provide passive observations that estimate derived surface quantities such as current speed and direction, and wave runup. Time exposure (timex) images from video cameras also provide information about the location of bright pixels (indications of breaking waves). Previous research has relied on the appearance of elongated, shore-normal regions of dark pixels (intersecting bright white regions) as a clear indicator of rip current presence, making timex images a prime candidate for automated detection of rip currents on beaches with video cameras installed. However, it is also known that rip currents vary widely in appearance, and that a better understanding of these parameters is necessary for automated rip current detection.</p><p>In this study, radar data and Argus camera imagery from the United States Army Corps of Engineers Field Research Facility at Duck, NC, USA were evaluated to determine how often radar measured offshore flow indicative of a rip current spatially correlates with dark, shore-normal features in the camera imagery. Radar data for two different times were processed to obtain surface current directions. Timex imagery from the video cameras on the same dates were evaluated with a machine learning algorithm   (Maryan et al. 2019) to objectively define the dark shore-normal features previously assumed to indicate rip currents’ existence within the imagery. A confusion matrix between these two datasets (surface flow direction and machine-identified rip current regions) confirms that dark, shore-normal features in the timex images are not always rip currents, and that offshore directed surface currents are not always visible as dark features in timex images. These results provide the first quantitative evaluation of how often rip current detections are missed and show that additional information is required for accurate automated rip current detection from camera imagery.</p><p>Further analysis will include using wind and wave data from field instruments at the site to reveal which conditions produce (1) offshore flow that is correlated with dark, shore-normal features in the timex imagery, (2) offshore flow that is not correlated with dark, shore-normal features in the timex imagery, and (3) dark, shore-normal features without focused offshore flow. This ongoing study could lead to the clarification of specific conditions under which the existence of rip currents can be correlated with a particular feature that machine learning techniques can be trained to recognize in camera imagery, thereby improving the accuracy of automated rip current detection. </p>


2020 ◽  
Author(s):  
JingJing Liu ◽  
JianChao Liu

<p>In recent years, China's unconventional oil and gas exploration and development has developed rapidly and has entered a strategic breakthrough period. At the same time, tight sandstone reservoirs have become a highlight of unconventional oil and gas development in the Ordos Basin in China due to its industrial and strategic value. As a digital representation of storage capacity, reservoir evaluation is a vital component of tight-oil exploration and development. Previous work on reservoir evaluation indicated that achieving satisfactory results is difficult because of reservoir heterogeneity and considerable risk of subjective or technical errors. In the data-driven era, this paper proposes a machine learning quantitative evaluation method for tight sandstone reservoirs based on K-means and random forests using high-pressure mercury-injection data. This method can not only provide new ideas for reservoir evaluation, but also be used for prediction and evaluation of other aspects in the field of oil and gas exploration and production, and then provide a more comprehensive parameter basis for “intelligent oil fields”. The results show that the reservoirs could be divided into three types, and the quantitative reservoir-evaluation criteria were established. This method has strong applicability, evident reservoir characteristics, and observable discrimination. The implications of these findings regarding ultra-low permeability and complex pore structures are practical.</p>


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


Sign in / Sign up

Export Citation Format

Share Document