Quantitative Evaluation of Classification Performance for Machine Learning ROC Analysis and Sensitivity/Specificity Plots

Author(s):  
Paul A. Guignard
2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Saritha Balasubramaniyan ◽  
Vijay Jeyakumar ◽  
Deepa Subramaniam Nachimuthu

AbstractDiabetes is a serious metabolic disorder with high rate of prevalence worldwide; the disease has the characteristics of improper secretion of insulin in pancreas that results in high glucose level in blood. The disease is also associated with other complications such as cardiovascular disease, retinopathy, neuropathy and nephropathy. The development of computer aided decision support system is inevitable field of research for disease diagnosis that will assist clinicians for the early prognosis of diabetes and to facilitate necessary treatment at the earliest. In this research study, a Traditional Chinese Medicine based diabetes diagnosis is presented based on analyzing the extracted features of panoramic tongue images such as color, texture, shape, tooth markings and fur. The feature extraction is done by Convolutional Neural Network (CNN)—ResNet 50 architecture, and the classification is performed by the proposed Deep Radial Basis Function Neural Network (RBFNN) algorithm based on auto encoder learning mechanism. The proposed model is simulated in MATLAB environment and evaluated with performance metrics—accuracy, precision, sensitivity, specificity, F1 score, error rate, and receiver operating characteristics (ROC). On comparing with existing models, the proposed CNN based Deep RBFNN machine learning classifier model outperformed with better classification performance and proving its effectiveness.


Diagnostics ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 415 ◽  
Author(s):  
Bomi Jeong ◽  
Hyunjeong Cho ◽  
Jieun Kim ◽  
Soon Kil Kwon ◽  
SeungWoo Hong ◽  
...  

This study aims to compare the classification performance of statistical models on highly imbalanced kidney data. The health examination cohort database provided by the National Health Insurance Service in Korea is utilized to build models with various machine learning methods. The glomerular filtration rate (GFR) is used to diagnose chronic kidney disease (CKD). It is calculated using the Modification of Diet in Renal Disease method and classified into five stages (1, 2, 3A and 3B, 4, and 5). Different CKD stages based on the estimated GFR are considered as six classes of the response variable. This study utilizes two representative generalized linear models for classification, namely, multinomial logistic regression (multinomial LR) and ordinal logistic regression (ordinal LR), as well as two machine learning models, namely, random forest (RF) and autoencoder (AE). The classification performance of the four models is compared in terms of accuracy, sensitivity, specificity, precision, and F1-Measure. To find the best model that classifies CKD stages correctly, the data are divided into a 10-fold dataset with the same rate for each CKD stage. Results indicate that RF and AE show better performance in accuracy than the multinomial and ordinal LR models when classifying the response variable. However, when a highly imbalanced dataset is modeled, the accuracy of the model performance can distort the actual performance. This occurs because accuracy is high even if a statistical model classifies a minority class into a majority class. To solve this problem in performance interpretation, we not only consider accuracy from the confusion matrix but also sensitivity, specificity, precision, and F-1 measure for each class. To present classification performance with a single value for each model, we calculate the macro-average and micro-weighted values for each model. We conclude that AE is the best model classifying CKD stages correctly for all performance indices.


2021 ◽  
Vol 19 (1-2) ◽  
pp. 41-61
Author(s):  
Hanumantha Rao Nadendla ◽  
A. Srikrishna ◽  
K. Gangadhara Rao

Image classification is the classical issue in computer vision, machine learning, and image processing. The image classification is measured by differentiating the image into the prescribed category based on the content of the vision. In this paper, a novel classifier named RideSFO-NN is developed for image classification. The proposed method performs the image classification by undergoing two steps, namely feature extraction and classification. Initially, the images from various sources are provided to the proposed Weighted Shape-Size Pattern Spectra for pattern analysis. From the pattern analysis, the significant features are obtained for the classification. Here, the proposed Weighted Shape-Size Pattern Spectra is designed by modifying the gray-scale decomposition with Weight-Shape decomposition. Then, the classification is done based on Neural Network (NN) classifier, which is trained using an optimization approach. The optimization will be done by the proposed Ride Sunflower optimization (RideSFO) algorithm, which is the integration of Rider optimization algorithm (ROA), and Sunflower optimization algorithm (SFO). Finally, the image classification performance is evaluated using RideSFO-NN based on sensitivity, specificity, and accuracy. The developed RideSFO-NN method achieves the maximal accuracy of 94%, maximal sensitivity of 93.87%, and maximal specificity of 90.52% based on K-Fold.


2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

<div>Classification has become a vital task in modern machine learning and Artificial Intelligence applications, including smart sensing. Numerous machine learning techniques are available to perform classification. Similarly, numerous practices, such as feature selection (i.e., selection of a subset of descriptor variables that optimally describe the output), are available to improve classifier performance. In this paper, we consider the case of a given supervised learning classification task that has to be performed making use of continuous-valued features. It is assumed that an optimal subset of features has already been selected. Therefore, no further feature reduction, or feature addition, is to be carried out. Then, we attempt to improve the classification performance by passing the given feature set through a transformation that produces a new feature set which we have named the “Binary Spectrum”. Via a case study example done on some Pulsed Eddy Current sensor data captured from an infrastructure monitoring task, we demonstrate how the classification accuracy of a Support Vector Machine (SVM) classifier increases through the use of this Binary Spectrum feature, indicating the feature transformation’s potential for broader usage.</div><div><br></div>


Author(s):  
Farrikh Alzami ◽  
Erika Devi Udayanti ◽  
Dwi Puji Prabowo ◽  
Rama Aria Megantara

Sentiment analysis in terms of polarity classification is very important in everyday life, with the existence of polarity, many people can find out whether the respected document has positive or negative sentiment so that it can help in choosing and making decisions. Sentiment analysis usually done manually. Therefore, an automatic sentiment analysis classification process is needed. However, it is rare to find studies that discuss extraction features and which learning models are suitable for unstructured sentiment analysis types with the Amazon food review case. This research explores some extraction features such as Word Bags, TF-IDF, Word2Vector, as well as a combination of TF-IDF and Word2Vector with several machine learning models such as Random Forest, SVM, KNN and Naïve Bayes to find out a combination of feature extraction and learning models that can help add variety to the analysis of polarity sentiments. By assisting with document preparation such as html tags and punctuation and special characters, using snowball stemming, TF-IDF results obtained with SVM are suitable for obtaining a polarity classification in unstructured sentiment analysis for the case of Amazon food review with a performance result of 87,3 percent.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1809
Author(s):  
Mohammed El Amine Senoussaoui ◽  
Mostefa Brahami ◽  
Issouf Fofana

Machine learning is widely used as a panacea in many engineering applications including the condition assessment of power transformers. Most statistics attribute the main cause of transformer failure to insulation degradation. Thus, a new, simple, and effective machine-learning approach was proposed to monitor the condition of transformer oils based on some aging indicators. The proposed approach was used to compare the performance of two machine-learning classifiers: J48 decision tree and random forest. The service-aged transformer oils were classified into four groups: the oils that can be maintained in service, the oils that should be reconditioned or filtered, the oils that should be reclaimed, and the oils that must be discarded. From the two algorithms, random forest exhibited a better performance and high accuracy with only a small amount of data. Good performance was achieved through not only the application of the proposed algorithm but also the approach of data preprocessing. Before feeding the classification model, the available data were transformed using the simple k-means method. Subsequently, the obtained data were filtered through correlation-based feature selection (CFsSubset). The resulting features were again retransformed by conducting the principal component analysis and were passed through the CFsSubset filter. The transformation and filtration of the data improved the classification performance of the adopted algorithms, especially random forest. Another advantage of the proposed method is the decrease in the number of the datasets required for the condition assessment of transformer oils, which is valuable for transformer condition monitoring.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 574
Author(s):  
Gennaro Tartarisco ◽  
Giovanni Cicceri ◽  
Davide Di Pietro ◽  
Elisa Leonardi ◽  
Stefania Aiello ◽  
...  

In the past two decades, several screening instruments were developed to detect toddlers who may be autistic both in clinical and unselected samples. Among others, the Quantitative CHecklist for Autism in Toddlers (Q-CHAT) is a quantitative and normally distributed measure of autistic traits that demonstrates good psychometric properties in different settings and cultures. Recently, machine learning (ML) has been applied to behavioral science to improve the classification performance of autism screening and diagnostic tools, but mainly in children, adolescents, and adults. In this study, we used ML to investigate the accuracy and reliability of the Q-CHAT in discriminating young autistic children from those without. Five different ML algorithms (random forest (RF), naïve Bayes (NB), support vector machine (SVM), logistic regression (LR), and K-nearest neighbors (KNN)) were applied to investigate the complete set of Q-CHAT items. Our results showed that ML achieved an overall accuracy of 90%, and the SVM was the most effective, being able to classify autism with 95% accuracy. Furthermore, using the SVM–recursive feature elimination (RFE) approach, we selected a subset of 14 items ensuring 91% accuracy, while 83% accuracy was obtained from the 3 best discriminating items in common to ours and the previously reported Q-CHAT-10. This evidence confirms the high performance and cross-cultural validity of the Q-CHAT, and supports the application of ML to create shorter and faster versions of the instrument, maintaining high classification accuracy, to be used as a quick, easy, and high-performance tool in primary-care settings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nita Vangeepuram ◽  
Bian Liu ◽  
Po-hsiang Chiu ◽  
Linhua Wang ◽  
Gaurav Pandey

AbstractPrediabetes and diabetes mellitus (preDM/DM) have become alarmingly prevalent among youth in recent years. However, simple questionnaire-based screening tools to reliably assess diabetes risk are only available for adults, not youth. As a first step in developing such a tool, we used a large-scale dataset from the National Health and Nutritional Examination Survey (NHANES) to examine the performance of a published pediatric clinical screening guideline in identifying youth with preDM/DM based on American Diabetes Association diagnostic biomarkers. We assessed the agreement between the clinical guideline and biomarker criteria using established evaluation measures (sensitivity, specificity, positive/negative predictive value, F-measure for the positive/negative preDM/DM classes, and Kappa). We also compared the performance of the guideline to those of machine learning (ML) based preDM/DM classifiers derived from the NHANES dataset. Approximately 29% of the 2858 youth in our study population had preDM/DM based on biomarker criteria. The clinical guideline had a sensitivity of 43.1% and specificity of 67.6%, positive/negative predictive values of 35.2%/74.5%, positive/negative F-measures of 38.8%/70.9%, and Kappa of 0.1 (95%CI: 0.06–0.14). The performance of the guideline varied across demographic subgroups. Some ML-based classifiers performed comparably to or better than the screening guideline, especially in identifying preDM/DM youth (p = 5.23 × 10−5).We demonstrated that a recommended pediatric clinical screening guideline did not perform well in identifying preDM/DM status among youth. Additional work is needed to develop a simple yet accurate screener for youth diabetes risk, potentially by using advanced ML methods and a wider range of clinical and behavioral health data.


Author(s):  
Kazutaka Uchida ◽  
Junichi Kouno ◽  
Shinichi Yoshimura ◽  
Norito Kinjo ◽  
Fumihiro Sakakibara ◽  
...  

AbstractIn conjunction with recent advancements in machine learning (ML), such technologies have been applied in various fields owing to their high predictive performance. We tried to develop prehospital stroke scale with ML. We conducted multi-center retrospective and prospective cohort study. The training cohort had eight centers in Japan from June 2015 to March 2018, and the test cohort had 13 centers from April 2019 to March 2020. We use the three different ML algorithms (logistic regression, random forests, XGBoost) to develop models. Main outcomes were large vessel occlusion (LVO), intracranial hemorrhage (ICH), subarachnoid hemorrhage (SAH), and cerebral infarction (CI) other than LVO. The predictive abilities were validated in the test cohort with accuracy, positive predictive value, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), and F score. The training cohort included 3178 patients with 337 LVO, 487 ICH, 131 SAH, and 676 CI cases, and the test cohort included 3127 patients with 183 LVO, 372 ICH, 90 SAH, and 577 CI cases. The overall accuracies were 0.65, and the positive predictive values, sensitivities, specificities, AUCs, and F scores were stable in the test cohort. The classification abilities were also fair for all ML models. The AUCs for LVO of logistic regression, random forests, and XGBoost were 0.89, 0.89, and 0.88, respectively, in the test cohort, and these values were higher than the previously reported prediction models for LVO. The ML models developed to predict the probability and types of stroke at the prehospital stage had superior predictive abilities.


2021 ◽  
Vol 23 ◽  
pp. 100545
Author(s):  
Israel Elujide ◽  
Stephen G. Fashoto ◽  
Bunmi Fashoto ◽  
Elliot Mbunge ◽  
Sakinat O. Folorunso ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document