Merging Grid Maps in Diverse Resolutions by the Context-based Descriptor

2021 ◽  
Vol 21 (4) ◽  
pp. 1-21
Author(s):  
Zhiyang Lin ◽  
Jihua Zhu ◽  
Zutao Jiang ◽  
Yujie Li ◽  
Yaochen Li ◽  
...  

Building an accurate map is essential for autonomous robot navigation in the environment without GPS. Compared with single-robot, the multiple-robot system has much better performance in terms of accuracy, efficiency and robustness for the simultaneous localization and mapping (SLAM). As a critical component of multiple-robot SLAM, the problem of map merging still remains a challenge. To this end, this article casts it into point set registration problem and proposes an effective map merging method based on the context-based descriptors and correspondence expansion. It first extracts interest points from grid maps by the Harris corner detector. By exploiting neighborhood information of interest points, it automatically calculates the maximum response radius as scale information to compute the context-based descriptor, which includes eigenvalues and normals computed from local structures of each interest point. Then, it effectively establishes origin matches with low precision by applying the nearest neighbor search on the context-based descriptor. Further, it designs a scale-based corresponding expansion strategy to expand each origin match into a set of feature matches, where one similarity transformation between two grid maps can be estimated by the Random Sample Consensus algorithm. Subsequently, a measure function formulated from the trimmed mean square error is utilized to confirm the best similarity transformation and accomplish the coarse map merging. Finally, it utilizes the scaling trimmed iterative closest point algorithm to refine initial similarity transformation so as to achieve accurate merging. As the proposed method considers scale information in the context-based descriptor, it is able to merge grid maps in diverse resolutions. Experimental results on real robot datasets demonstrate its superior performance over other related methods on accuracy and robustness.

2018 ◽  
Vol 7 (1) ◽  
pp. 6
Author(s):  
Amr Reda. R. Almaddah ◽  
Tauseef Ahmad ◽  
Abdullah Dubai

The traditional Harris detector are sensitive to noise and resolution because without the property of scale invariant.  In this research, The Harris corner detector algorithm is improved, to work with multi resolution images, the technique has also been working with poor lighting condition by using histogram equalization technique. The work we have done addresses the issue of robustly detection of feature points, detected multiple of local features are characterized by the intensity changes in both horizontal and vertical direction which is called corner features.  The goal of this work is to detect the corner of an object through the Harris corner detector with multiple scale of the same image. The scale invariant property applied to the Harris algorithm for improving the corner detection performance in different resolution of the same image with the same interest point. The detected points represented by two independent variables (x, y) in a matrix (x, y) and the dependent variable f are called intensity of interest points. Through these independent variable, we get the displacement and velocity of object by subtracting independent variable f(x,y) at current frame from the previous location f ̀((x,) ̀(y,) ̀) of another frame. For further work, multiple of moving object environment have been taken consideration for developing algorithms.


2018 ◽  
Vol 1 (1) ◽  
pp. 6
Author(s):  
Amr Reda. R. Almaddah ◽  
Tauseef Ahmad ◽  
Abdullah Dubai

The traditional Harris detector are sensitive to noise and resolution because without the property of scale invariant.  In this research, The Harris corner detector algorithm is improved, to work with multi resolution images, the technique has also been working with poor lighting condition by using histogram equalization technique. The work we have done addresses the issue of robustly detection of feature points, detected multiple of local features are characterized by the intensity changes in both horizontal and vertical direction which is called corner features.  The goal of this work is to detect the corner of an object through the Harris corner detector with multiple scale of the same image. The scale invariant property applied to the Harris algorithm for improving the corner detection performance in different resolution of the same image with the same interest point. The detected points represented by two independent variables (x, y) in a matrix (x, y) and the dependent variable f are called intensity of interest points. Through these independent variable, we get the displacement and velocity of object by subtracting independent variable f(x,y) at current frame from the previous location f ̀((x,) ̀(y,) ̀) of another frame. For further work, multiple of moving object environment have been taken consideration for developing algorithms.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Valentín Osuna-Enciso ◽  
Erik Cuevas ◽  
Diego Oliva ◽  
Virgilio Zúñiga ◽  
Marco Pérez-Cisneros ◽  
...  

In several machine vision problems, a relevant issue is the estimation of homographies between two different perspectives that hold an extensive set of abnormal data. A method to find such estimation is the random sampling consensus (RANSAC); in this, the goal is to maximize the number of matching points given a permissible error (Pe), according to a candidate model. However, those objectives are in conflict: a low Pe value increases the accuracy of the model but degrades its generalization ability that refers to the number of matching points that tolerate noisy data, whereas a high Pe value improves the noise tolerance of the model but adversely drives the process to false detections. This work considers the estimation process as a multiobjective optimization problem that seeks to maximize the number of matching points whereas Pe is simultaneously minimized. In order to solve the multiobjective formulation, two different evolutionary algorithms have been explored: the Nondominated Sorting Genetic Algorithm II (NSGA-II) and the Nondominated Sorting Differential Evolution (NSDE). Results considering acknowledged quality measures among original and transformed images over a well-known image benchmark show superior performance of the proposal than Random Sample Consensus algorithm.


Author(s):  
M. Chen ◽  
Q. Zhu ◽  
S. Yan ◽  
Y. Zhao

<p><strong>Abstract.</strong> Feature matching is a fundamental technical issue in many applications of photogrammetry and remote sensing. Although recently developed local feature detectors and descriptors have contributed to the advancement of point matching, challenges remain with regard to urban area images that are characterized by large discrepancies in viewing angles. In this paper, we define a concept of local geometrical structure (LGS) and propose a novel feature matching method by exploring the LGS of interest points to specifically address difficult situations in matching points on wide-baseline urban area images. In this study, we first detect interest points from images using a popular detector and compute the LGS of each interest point. Then, the interest points are classified into three categories on the basis of LGS. Thereafter, a hierarchical matching framework that is robust to image viewpoint change is proposed to compute correspondences, in which different feature region computation methods, description methods, and matching strategies are designed for various types of interest points according to their LGS properties. Finally, random sample consensus algorithm based on fundamental matrix is applied to eliminate outliers. The proposed method can generate similar feature descriptors for corresponding interest points under large viewpoint variation even in discontinuous areas that benefit from the LGS-based adaptive feature region construction. Experimental results demonstrate that the proposed method provides significant improvements in correct match number and matching precision compared with other traditional matching methods for urban area wide-baseline images.</p>


10.29007/kqbg ◽  
2018 ◽  
Author(s):  
Mehfuza Holia ◽  
Zankhana Shah

The automatic construction of large, high-resolution multi view image registration is an active area of research in the fields of image processing. Multiview image registration can be used for many different applications. The most traditional application is the construction of large aerial and satellite photographs from collections of images, construction of virtual travel etc. This proposed Automatic feature based image registration method does not allow any user interaction and perform all registration steps automatically. Here the matching points are found automatically using local feature detector i.e. harris corner detector which find invariant features using feature descriptors as oriented patches. For estimating homography between detected features of images to be registered, Homography estimator i.e. modified RANSAC (RANdom SAmple Consensus) algorithm, and direct linear transformation algorithm is used. Here features are located at Harris corners (new improved) in discrete scale-space and oriented using a blurred local gradient. To have better spatial distribution of features, adaptive non- maximal suppression algorithm is used.Feature matching are achieved using RANSAC which also uses DLT (Direct Linear Transformation) and warping is applied to achieve final registered image. This proposed algorithm can be applied for the series of images that may or may not be in the same alignment as per desired output image, thus mainly scaling, rotation and image transformation must be applied to get proper registered image.


10.14311/948 ◽  
2007 ◽  
Vol 47 (4-5) ◽  
Author(s):  
P. Hosten ◽  
M. Asbach

This paper presents a new approach to the detection of facial features. A scale adapted Harris Corner detector is used to find interest points in scale-space. These points are described by the SIFT descriptor. Thus invariance with respect to image scale, rotation and illumination is obtained. Applying a Karhunen-Loeve transform reduces the dimensionality of the feature space. In the training process these features are clustered by the k-means algorithm, followed by a cluster analysis to find the most distinctive clusters, which represent facial features in feature space. Finally, a classifier based on the nearest neighbor approach is used to decide whether the features obtained from the interest points are facial features or not. 


Author(s):  
Tai D. Nguyen ◽  
Ronald Gronsky ◽  
Jeffrey B. Kortright

Nanometer period Ru/C multilayers are one of the prime candidates for normal incident reflecting mirrors at wavelengths < 10 nm. Superior performance, which requires uniform layers and smooth interfaces, and high stability of the layered structure under thermal loadings are some of the demands in practical applications. Previous studies however show that the Ru layers in the 2 nm period Ru/C multilayer agglomerate upon moderate annealing, and the layered structure is no longer retained. This agglomeration and crystallization of the Ru layers upon annealing to form almost spherical crystallites is a result of the reduction of surface or interfacial energy from die amorphous high energy non-equilibrium state of the as-prepared sample dirough diffusive arrangements of the atoms. Proposed models for mechanism of thin film agglomeration include one analogous to Rayleigh instability, and grain boundary grooving in polycrystalline films. These models however are not necessarily appropriate to explain for the agglomeration in the sub-nanometer amorphous Ru layers in Ru/C multilayers. The Ru-C phase diagram shows a wide miscible gap, which indicates the preference of phase separation between these two materials and provides an additional driving force for agglomeration. In this paper, we study the evolution of the microstructures and layered structure via in-situ Transmission Electron Microscopy (TEM), and attempt to determine the order of occurence of agglomeration and crystallization in the Ru layers by observing the diffraction patterns.


Sign in / Sign up

Export Citation Format

Share Document