Intelligent Mediator-based Enhanced Smart Contract for Privacy Protection

2021 ◽  
Vol 21 (1) ◽  
pp. 1-16
Author(s):  
Junho Kim ◽  
Mucheol Kim
2021 ◽  
Vol 11 (9) ◽  
pp. 4011
Author(s):  
Dan Wang ◽  
Jindong Zhao ◽  
Chunxiao Mu

In the field of modern bidding, electronic bidding leads a new trend of development, convenience and efficiency and other significant advantages effectively promote the reform and innovation of China’s bidding field. Nowadays, most systems require a strong and trusted third party to guarantee the integrity and security of the system. However, with the development of blockchain technology and the rise of privacy protection, researchers has begun to emphasize the core concept of decentralization. This paper introduces a decentralized electronic bidding system based on blockchain and smart contract. The system uses blockchain to replace the traditional database and uses chaincode to process business logic. In data interaction, encryption techniques such as zero-knowledge proof based on graph isomorphism are used to improve privacy protection, which improves the anonymity of participants, the privacy of data transmission, and the traceability and verifiable of data. Compared with other electronic bidding systems, this system is more secure and efficient, and has the nature of anonymous operation, which fully protects the privacy information in the bidding process.


2021 ◽  
Vol 560 ◽  
pp. 183-201
Author(s):  
Lei Zhang ◽  
Desheng Liu ◽  
Meina Chen ◽  
Hongyan Li ◽  
Chao Wang ◽  
...  

2021 ◽  
Author(s):  
Su Liu ◽  
Jian Wang

Ethereum is a public blockchain platform with smart contract. However, it has transaction privacy issues due to the openness of the underlying ledger. Decentralized mixing schemes are presented to hide transaction relationship and transferred amount, but suffer from high transaction cost and long transaction latency. To overcome the two challenges, we propose the idea of batch accounting, adopting batch processing at the time of accounting. For further realization, we introduce payment channel technology into decentralized mixer. Since intermediate transactions between two parties do not need network consensus, our scheme can reduce both transaction cost and transaction latency. Moreover, we provide informal definitions and proofs of our scheme's security. Finally, our scheme is implemented based on zk-SNARKs and Ganache, and experimental results show that the higher number of transactions in batch, the better our scheme performs.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 24746-24772 ◽  
Author(s):  
Rajesh Gupta ◽  
Sudeep Tanwar ◽  
Fadi Al-Turjman ◽  
Prit Italiya ◽  
Ali Nauman ◽  
...  

2020 ◽  
Vol 12 (2) ◽  
pp. 41
Author(s):  
Nikolaos Kapsoulis ◽  
Alexandros Psychas ◽  
Georgios Palaiokrassas ◽  
Achilleas Marinakis ◽  
Antonios Litke ◽  
...  

Enterprise blockchain solutions attempt to solve the crucial matter of user privacy, albeit that blockchain was initially directed towards full transparency. In the context of Know Your Customer (KYC) standardization, a decentralized schema that enables user privacy protection on enterprise blockchains is proposed with two types of developed smart contracts. Through the public KYC smart contract, a user registers and uploads their KYC information to the exploited IPFS storage, actions interpreted in blockchain transactions on the permissioned blockchain of Alastria Network. Furthermore, through the public KYC smart contract, an admin user approves or rejects the validity and expiration date of the initial user’s KYC documents. Inside the private KYC smart contract, CRUD (Create, read, update and delete) operations for the KYC file repository occur. The presented system introduces effectiveness and time efficiency of operations through its schema simplicity and smart integration of the different technology modules and components. This developed scheme focuses on blockchain technology as the most important and critical part of the architecture and tends to accomplish an optimal schema clarity.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yingwen Chen ◽  
Linghang Meng ◽  
Huan Zhou ◽  
Guangtao Xue

The rapid development of wearable sensors and the 5G network empowers traditional medical treatment with the ability to collect patients’ information remotely for monitoring and diagnosing purposes. Meanwhile, the health-related mobile apps and devices also generate a large amount of medical data, which is critical for promoting disease research and diagnosis. However, medical data is too sensitive to share, which is also a common issue for IoT (Internet of Things) data. The traditional centralized cloud-based medical data sharing schemes have to rely on a single trusted third party. Therefore, the schemes suffer from single-point failure and lack of privacy protection and access control for the data. Blockchain is an emerging technique to provide an approach for managing data in a decentralized manner. Especially, the blockchain-based smart contract technique enables the programmability for participants to access the data. All the interactions are authenticated and recorded by the other participants of the blockchain network, which is tamper resistant. In this paper, we leverage the K-anonymity and searchable encryption techniques and propose a blockchain-based privacy-preserving scheme for medical data sharing among medical institutions and data users. To be specific, the consortium blockchain, Hyperledger Fabric, is adopted to allow data users to search for encrypted medical data records. The smart contract, i.e., the chaincode, implements the attribute-based access control mechanisms to guarantee that the data can only be accessed by the user with proper attributes. The K-anonymity and searchable encryption ensure that the medical data is shared without privacy leaking, i.e., figuring out an individual patient from queries. We implement a prototype system using the chaincode of Hyperledger Fabric. From the functional perspective, security analysis shows that the proposed scheme satisfies security goals and precedes others. From the performance perspective, we conduct experiments by simulating different numbers of medical institutions. The experimental results demonstrate that the scalability and performance of our scheme are practical.


Computers ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Junhoo Park ◽  
Hyekjin Kim ◽  
Geunyoung Kim ◽  
Jaecheol Ryou

As blockchain-based applications and research such as cryptocurrency increase, an oracle problem to bring external data in the blockchain is emerging. Among the methods to solve the oracle problem, a method of configuring oracle based on TLS, an existing internet infrastructure, has been proposed. However, these methods currently have the disadvantage of not supporting privacy protection for external data, and there are limitations in configuring the process of a smart contract based on external data verification for automation. To solve this problem, we propose a framework consisting of middleware of external source server, data prover, and verification contract. The framework converts the data signed in the web server into a proof that the owner can prove with zk-SNARKs and provides a smart contract that can verify this. Through these procedures, data owners not only protect their privacy by proving themselves, but they can also automate on-chain processing through smart contract verification. For the proposed framework, we create a proof using libsnark for server data and show the performance and cost to verify with Solidity the smart contract language of the Ethereum platform.


2010 ◽  
Vol 43 (13) ◽  
pp. 77
Author(s):  
MARY ELLEN SCHNEIDER
Keyword(s):  

2019 ◽  
Vol 5 (1) ◽  
pp. 15-22
Author(s):  
Ardian Thresnantia Atmaja

The key objectives of this paper is to propose a design implementation of blockchain based on smart contract which have potential to change international mobile roaming business model by eliminating third-party data clearing house (DCH). The analysis method used comparative analysis between current situation and target architecture of international mobile roaming business that commonly used by TOGAF Architecture Development Method. The purposed design of implementation has validated the business value by using Total Cost of Ownership (TCO) calculation. This paper applies the TOGAF approach in order to address architecture gap to evaluate by the enhancement capability that required from these three fundamental aspect which are Business, Technology and Information. With the blockchain smart contract solution able to eliminate the intermediaries Data Clearing House system, which impacted to the business model of international mobile roaming with no more intermediaries fee for call data record (CDR) processing and open up for online billing and settlement among parties. In conclusion the business value of blockchain implementation in the international mobile roaming has been measured using TCO comparison between current situation and target architecture that impacted cost reduction of operational platform is 19%. With this information and understanding the blockchain technology has significant benefit in the international mobile roaming business.


Sign in / Sign up

Export Citation Format

Share Document