Modeling Temporal Patterns with Dilated Convolutions for Time-Series Forecasting

2021 ◽  
Vol 16 (1) ◽  
pp. 1-22
Author(s):  
Yangfan Li ◽  
Kenli Li ◽  
Cen Chen ◽  
Xu Zhou ◽  
Zeng Zeng ◽  
...  

Time-series forecasting is an important problem across a wide range of domains. Designing accurate and prompt forecasting algorithms is a non-trivial task, as temporal data that arise in real applications often involve both non-linear dynamics and linear dependencies, and always have some mixtures of sequential and periodic patterns, such as daily, weekly repetitions, and so on. At this point, however, most recent deep models often use Recurrent Neural Networks (RNNs) to capture these temporal patterns, which is hard to parallelize and not fast enough for real-world applications especially when a huge amount of user requests are coming. Recently, CNNs have demonstrated significant advantages for sequence modeling tasks over the de-facto RNNs, while providing high computational efficiency due to the inherent parallelism. In this work, we propose HyDCNN, a novel hybrid framework based on fully Dilated CNN for time-series forecasting tasks. The core component in HyDCNN is a proposed hybrid module, in which our proposed position-aware dilated CNNs are utilized to capture the sequential non-linear dynamics and an autoregressive model is leveraged to capture the sequential linear dependencies. To further capture the periodic temporal patterns, a novel hop scheme is introduced in the hybrid module. HyDCNN is then composed of multiple hybrid modules to capture the sequential and periodic patterns. Each of these hybrid modules targets on either the sequential pattern or one kind of periodic patterns. Extensive experiments on five real-world datasets have shown that the proposed HyDCNN is better compared with state-of-the-art baselines and is at least 200% better than RNN baselines. The datasets and source code will be published in Github to facilitate more future work.

2020 ◽  
Vol 54 (2) ◽  
pp. 597-614
Author(s):  
Shanoli Samui Pal ◽  
Samarjit Kar

In this paper, fuzzified Choquet integral and fuzzy-valued integrand with respect to separate measures like fuzzy measure, signed fuzzy measure and intuitionistic fuzzy measure are used to develop regression model for forecasting. Fuzzified Choquet integral is used to build a regression model for forecasting time series with multiple attributes as predictor attributes. Linear regression based forecasting models are suffering from low accuracy and unable to approximate the non-linearity in time series. Whereas Choquet integral can be used as a general non-linear regression model with respect to non classical measures. In the Choquet integral based regression model parameters are optimized by using a real coded genetic algorithm (GA). In these forecasting models, fuzzified integrands denote the participation of an individual attribute or a group of attributes to predict the current situation. Here, more generalized Choquet integral, i.e., fuzzified Choquet integral is used in case of non-linear time series forecasting models. Three different real stock exchange data are used to predict the time series forecasting model. It is observed that the accuracy of prediction models highly depends on the non-linearity of the time series.


Author(s):  
Andrzej Rysak ◽  
Magdalena Gregorczyk

Investigations of systems with an active magnetostrictive element generally assume the presence of an external homogeneous bias magnetic field. This article, however, presents the results of a study investigating a bimorph magnetostrictive-aluminium beam vibrating in a non-homogeneous bias field. By comparing results obtained under different operating conditions of the system, the combined effect of the non-linear beam stress and the non-homogeneous external magnetic field on the dynamics of the Villari phenomenon is determined. The preliminary results prove that the application of non-linear magnetic fields to the magnetostrictive devices ensures the extension of energy harvesting bandwidth of these devices and can be used to improve their control possibilities. A study of time series and hysteresis loops provides more detailed information about the non-linear magnetization and dynamics of the system.


2014 ◽  
Vol 10 (2) ◽  
pp. 18-38 ◽  
Author(s):  
Kung-Jiuan Yang ◽  
Tzung-Pei Hong ◽  
Yuh-Min Chen ◽  
Guo-Cheng Lan

Partial periodic patterns are commonly seen in real-world applications. The major problem of mining partial periodic patterns is the efficiency problem due to a huge set of partial periodic candidates. Although some efficient algorithms have been developed to tackle the problem, the performance of the algorithms significantly drops when the mining parameters are set low. In the past, the authors have adopted the projection-based approach to discover the partial periodic patterns from single-event time series. In this paper, the authors extend it to mine partial periodic patterns from a sequence of event sets which multiple events concurrently occur at the same time stamp. Besides, an efficient pruning and filtering strategy is also proposed to speed up the mining process. Finally, the experimental results on a synthetic dataset and real oil price dataset show the good performance of the proposed approach.


Author(s):  
Imran Qureshi ◽  
Burhanuddin Mohammad ◽  
Mohammed Abdul Habeeb ◽  
Mohammed Ali Shaik

Author(s):  
Yingzi Wang ◽  
Nicholas Jing Yuan ◽  
Yu Sun ◽  
Chuan Qin ◽  
Xing Xie

Product sales forecasting enables comprehensive understanding of products' future development, making it of particular interest for companies to improve their business, for investors to measure the values of firms, and for users to capture the trends of a market. Recent studies show that the complex competition interactions among products directly influence products' future development. However, most existing approaches fail to model the evolutionary competition among products and lack the capability to organically reflect multi-level competition analysis in sales forecasting. To address these problems, we propose the Evolutionary Hierarchical Competition Model (EHCM), which effectively considers the time-evolving multi-level competition among products. The EHCM model systematically integrates hierarchical competition analysis with multi-scale time series forecasting. Extensive experiments using a real-world app download dataset show that EHCM outperforms state-of-the-art methods in various forecasting granularities.


2020 ◽  
Vol 11 ◽  
Author(s):  
Erwan Le Deunff ◽  
Patrick Beauclair ◽  
Julien Lecourt ◽  
Carole Deleu ◽  
Philippe Malagoli

With regard to thermodynamics out of equilibrium, seedlings are open systems that dissipate energy towards their environment. Accordingly, under nutritional steady-state conditions, changes in external concentrations of one single ion provokes instability and reorganization in the metabolic and structure/architecture of the seedling that is more favorable to the fluxes of energy and matter. This reorganization is called a bifurcation and is described in mathematics as a non-linear dynamic system. In this study, we investigate the non-linear dynamics of 15N fluxes among cellular compartments of B. napus seedlings in response to a wide range of external NO3−15 concentrations (from 0.05 to 20 mM): this allows to determine whether any stationary states and bifurcations could be found. The biphasic behavior of the root NO3−15 uptake rate (vin) was explained by the combined cooperative properties between the vapp (N uptake, storage and assimilation rate) and vout (N translocation rate) 15N fluxes that revealed a unique and stable stationary state around 0.28 mM nitrate. The disappearance of this stationary state around 0.5 mM external nitrate concentrations provokes a dramatic bifurcation in 15N flux pattern. This bifurcation in the vin and vout15N fluxes fits better with the increase of BnNPF6.3/NRT1.1 expression than BnNRT2.1 nitrate transporter genes, confirming the allosteric property of the BnNPF6/NRT1.1 transporter, as reported in the literature between low and high nitrate concentrations. Moreover, several statistically significant power-law equations were found between variations in the shoots tryptophan concentrations (i.e., IAA precursor) with changes in the vapp and vout15N fluxes as well as a synthetic parameter of plant N status estimated from the root/shoot ratio of total free amino acids concentrations. These relationships designate IAA as one of the major biological parameters related to metabolic and structural-morphological reorganization coupled with the N and water fluxes induced by nitrate. The results seriously challenge the scientific grounds of the concept of high- and low-affinity of nitrate transporters and are therefore discussed in terms of the ecological significance and physiological implications on the basis of recent agronomic, physiological and molecular data of the literature.


Sign in / Sign up

Export Citation Format

Share Document