scholarly journals A Survey on the Role of Centrality as Seed Nodes for Information Propagation in Large Scale Network

2021 ◽  
Vol 2 (3) ◽  
pp. 1-25
Author(s):  
Paramita Dey ◽  
Subhayan Bhattacharya ◽  
Sarbani Roy

From the popular concept of six-degree separation, social networks are generally analyzed in the perspective of small world networks where centrality of nodes play a pivotal role in information propagation. However, working with a large dataset of a scale-free network (which follows power law) may be different due to the nature of the social graph. Moreover, the derivation of centrality may be difficult due to the computational complexity of identifying centrality measures. This study provides a comprehensive and extensive review and comparison of seven centrality measures (clustering coefficients, Node degree, K-core, Betweenness, Closeness, Eigenvector, PageRank) using four information propagation methods (Breadth First Search, Random Walk, Susceptible-Infected-Removed, Forest Fire). Five benchmark similarity measures (Tanimoto, Hamming, Dice, Sorensen, Jaccard) have been used to measure the similarity between the seed nodes identified using the centrality measures with actual source seeds derived through Google's LargeStar-SmallStar algorithm on Twitter Stream Data. MapReduce has been utilized for identifying the seed nodes based on centrality measures and for information propagation simulation. It is observed that most of the centrality measures perform well compared to the actual source in the initial stage but are saturated after a certain level of influence maximization in terms of both affected nodes and propagation level.

2022 ◽  
Vol 27 (1) ◽  
pp. 1-30
Author(s):  
Mengke Ge ◽  
Xiaobing Ni ◽  
Xu Qi ◽  
Song Chen ◽  
Jinglei Huang ◽  
...  

Brain network is a large-scale complex network with scale-free, small-world, and modularity properties, which largely supports this high-efficiency massive system. In this article, we propose to synthesize brain-network-inspired interconnections for large-scale network-on-chips. First, we propose a method to generate brain-network-inspired topologies with limited scale-free and power-law small-world properties, which have a low total link length and extremely low average hop count approximately proportional to the logarithm of the network size. In addition, given the large-scale applications, considering the modularity of the brain-network-inspired topologies, we present an application mapping method, including task mapping and deterministic deadlock-free routing, to minimize the power consumption and hop count. Finally, a cycle-accurate simulator BookSim2 is used to validate the architecture performance with different synthetic traffic patterns and large-scale test cases, including real-world communication networks for the graph processing application. Experiments show that, compared with other topologies and methods, the brain-network-inspired network-on-chips (NoCs) generated by the proposed method present significantly lower average hop count and lower average latency. Especially in graph processing applications with a power-law and tightly coupled inter-core communication, the brain-network-inspired NoC has up to 70% lower average hop count and 75% lower average latency than mesh-based NoCs.


2018 ◽  
Vol 32 (11) ◽  
pp. 1850128 ◽  
Author(s):  
Youquan Wang ◽  
Feng Yu ◽  
Shucheng Huang ◽  
Juanjuan Tu ◽  
Yan Chen

Networks with high propensity to synchronization are desired in many applications ranging from biology to engineering. In general, there are two ways to enhance the synchronizability of a network: link rewiring and/or link weighting. In this paper, we propose a new link weighting strategy based on the concept of the neighborhood subgroup. The neighborhood subgroup of a node i through node j in a network, i.e. [Formula: see text], means that node u belongs to [Formula: see text] if node u belongs to the first-order neighbors of j (not include i). Our proposed weighting schema used the local and global structural properties of the networks such as the node degree, betweenness centrality and closeness centrality measures. We applied the method on scale-free and Watts–Strogatz networks of different structural properties and show the good performance of the proposed weighting scheme. Furthermore, as model networks cannot capture all essential features of real-world complex networks, we considered a number of undirected and unweighted real-world networks. To the best of our knowledge, the proposed weighting strategy outperformed the previously published weighting methods by enhancing the synchronizability of these real-world networks.


2015 ◽  
Vol 26 (05) ◽  
pp. 1550052 ◽  
Author(s):  
Lei Wang ◽  
Ping Wang

In this paper, we attempt to understand the propagation and stability feature of large-scale complex software from the perspective of complex networks. Specifically, we introduced the concept of "propagation scope" to investigate the problem of change propagation in complex software. Although many complex software networks exhibit clear "small-world" and "scale-free" features, we found that the propagation scope of complex software networks is much lower than that of small-world networks and scale-free networks. Furthermore, because the design of complex software always obeys the principles of software engineering, we introduced the concept of "edge instability" to quantify the structural difference among complex software networks, small-world networks and scale-free networks. We discovered that the edge instability distribution of complex software networks is different from that of small-world networks and scale-free networks. We also found a typical structure that contributes to the edge instability distribution of complex software networks. Finally, we uncovered the correlation between propagation scope and edge instability in complex networks by eliminating the edges with different instability ranges.


2021 ◽  
Vol 12 ◽  
Author(s):  
Changgui Gu ◽  
Jiahui Li ◽  
Jian Zhou ◽  
Huijie Yang ◽  
Jos Rohling

A master clock located in the suprachiasmatic nucleus (SCN) regulates the circadian rhythm of physiological and behavioral activities in mammals. The SCN has two main functions in the regulation: an endogenous clock produces the endogenous rhythmic signal in body rhythms, and a calibrator synchronizes the body rhythms to the external light-dark cycle. These two functions have been determined to depend on either the dynamic behaviors of individual neurons or the whole SCN neuronal network. In this review, we first introduce possible network structures for the SCN, as revealed by time series analysis from real experimental data. It was found that the SCN network is heterogeneous and sparse, that is, the average shortest path length is very short, some nodes are hubs with large node degrees but most nodes have small node degrees, and the average node degree of the network is small. Secondly, the effects of the SCN network structure on the SCN function are reviewed based on mathematical models of the SCN network. It was found that robust rhythms with large amplitudes, a high synchronization between SCN neurons and a large entrainment ability exists mainly in small-world and scale-free type networks, but not other types. We conclude that the SCN most probably is an efficient small-world type or scale-free type network, which drives SCN function.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Weiwei Cao ◽  
Xiangnan Feng ◽  
Jianmin Jia ◽  
Hong Zhang

Understanding the structure of the Chinese railway network (CRN) is crucial for maintaining its efficiency and planning its future development. To advance our knowledge of CRN, we modeled CRN as a complex weighted network and explored the structural characteristics of the network via statistical evaluations and spatial analysis. Our results show CRN as a small-world network whose train flow obeys power-law decaying, demonstrating that CRN is a mature transportation infrastructure with a scale-free structure. CRN also shows significant spatial heterogeneity and hierarchy in its regionally uneven train flow distribution. We then examined the nodal centralities of CRN using four topological measures: degree, strength, betweenness, and closeness. Nodal degree is positively correlated with strength, betweenness, and closeness. Unlike the common feature of a scale-free network, the most connected nodes in CRN are not necessarily the most central due to underlying geographical, political, and socioeconomic factors. We proposed an integrated measure based on the four centrality measures to identify the global role of each node and the multilayer structure of CRN and confirm that stable connections hold between different layers of CRN.


2005 ◽  
Vol 16 (07) ◽  
pp. 1149-1161 ◽  
Author(s):  
YU-SONG TU ◽  
A. O. SOUSA ◽  
LING-JIANG KONG ◽  
MU-REN LIU

We analyze the evolution of Sznajd Model with synchronous updating in several complex networks. Similar to the model on square lattice, we have found a transition between the state with nonconsensus and the state with complete consensus in several complex networks. Furthermore, by adjusting the network parameters, we find that a large clustering coefficient does not favor development of a consensus. In particular, in the limit of large system size with the initial concentration p =0.5 of opinion +1, a consensus seems to be never reached for the Watts–Strogatz small-world network, when we fix the connectivity k and the rewiring probability ps; nor for the scale-free network, when we fix the minimum node degree m and the triad formation step probability pt.


2019 ◽  
Vol 6 (4) ◽  
pp. 711-723 ◽  
Author(s):  
Nicolas Martin ◽  
Paolo Frasca ◽  
Carlos Canudas-de-Wit

2018 ◽  
Vol 16 (2) ◽  
pp. 71-93
Author(s):  
Suwimon VONGSINGTHONG ◽  
Sirapat BOONKRONG ◽  
Herwig UNGER

A new approach to understanding human online behavior in regard to psychological functioning is proposed through the developed user’s activity model incorporating the influences of social behavior, network, and content. Microscopic levels of user characteristics induced by personality traits were interpolated as interaction rules, whilst an unsupervised clustering algorithm was applied to penetrate the individual complexity. Temporal behavior of disparate users was mimicked, and streaming network data was generated and computationally analyzed. A comprehensive understanding of how individuality, friendship, and varying temperaments dramatically reshaped the networks was gained from insight synthesis of network properties characterized by small-world, scale-free, and centrality measures. Evidence illustrates that users with high extraversion possess high numbers of friends and spread massive information, while high conscientious and high intellect users are seriously discreet in accepting friends and often produce influential content. These results not only provide a wealth of challenges for product recommendation, network structure optimization, and design, but also are useful for the prediction of future network structural evolution.


Sign in / Sign up

Export Citation Format

Share Document