scholarly journals Characterizing the Structure of the Railway Network in China: A Complex Weighted Network Approach

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Weiwei Cao ◽  
Xiangnan Feng ◽  
Jianmin Jia ◽  
Hong Zhang

Understanding the structure of the Chinese railway network (CRN) is crucial for maintaining its efficiency and planning its future development. To advance our knowledge of CRN, we modeled CRN as a complex weighted network and explored the structural characteristics of the network via statistical evaluations and spatial analysis. Our results show CRN as a small-world network whose train flow obeys power-law decaying, demonstrating that CRN is a mature transportation infrastructure with a scale-free structure. CRN also shows significant spatial heterogeneity and hierarchy in its regionally uneven train flow distribution. We then examined the nodal centralities of CRN using four topological measures: degree, strength, betweenness, and closeness. Nodal degree is positively correlated with strength, betweenness, and closeness. Unlike the common feature of a scale-free network, the most connected nodes in CRN are not necessarily the most central due to underlying geographical, political, and socioeconomic factors. We proposed an integrated measure based on the four centrality measures to identify the global role of each node and the multilayer structure of CRN and confirm that stable connections hold between different layers of CRN.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xiuwen Fu ◽  
Yongsheng Yang ◽  
Haiqing Yao

Previous research of wireless sensor networks (WSNs) invulnerability mainly focuses on the static topology, while ignoring the cascading process of the network caused by the dynamic changes of load. Therefore, given the realistic features of WSNs, in this paper we research the invulnerability of WSNs with respect to cascading failures based on the coupled map lattice (CML). The invulnerability and the cascading process of four types of network topologies (i.e., random network, small-world network, homogenous scale-free network, and heterogeneous scale-free network) under various attack schemes (i.e., random attack, max-degree attack, and max-status attack) are investigated, respectively. The simulation results demonstrate that the rise of interference R and coupling coefficient ε will increase the risks of cascading failures. Cascading threshold values Rc and εc exist, where cascading failures will spread to the entire network when R>Rc or ε>εc. When facing a random attack or max-status attack, the network with higher heterogeneity tends to have a stronger invulnerability towards cascading failures. Conversely, when facing a max-degree attack, the network with higher uniformity tends to have a better performance. Besides that, we have also proved that the spreading speed of cascading failures is inversely proportional to the average path length of the network and the increase of average degree k can improve the network invulnerability.


2019 ◽  
Vol 33 (23) ◽  
pp. 1950266 ◽  
Author(s):  
Jin-Xuan Yang

Network structure will evolve over time, which will lead to changes in the spread of the epidemic. In this work, a network evolution model based on the principle of preferential attachment is proposed. The network will evolve into a scale-free network with a power-law exponent between 2 and 3 by our model, where the exponent is determined by the evolution parameters. We analyze the epidemic spreading process as the network evolves from a small-world one to a scale-free one, including the changes in epidemic threshold over time. The condition of epidemic threshold to increase is given with the evolution processes. The simulated results of real-world networks and synthetic networks show that as the network evolves at a low evolution rate, it is more conducive to preventing epidemic spreading.


2006 ◽  
Vol 20 (27) ◽  
pp. 1755-1761 ◽  
Author(s):  
BAIBAI FU ◽  
ZIYOU GAO ◽  
FASHENG LIU ◽  
XIANJUAN KONG

An express highway itself is not a scale-free network, while the Express Passenger Transport System (EPTS) on the express highway network has the properties of a small-world and scale-free network. Data analysis based on the observation of the EPTS in Shandong province, China, shows that the EPTS has the properties of scale-free networks and the power exponent λ of the distribution is equal to about 2.1. Based on the scale-free network topology structure of the EPTS network, the construction of the EPTS network will be more efficient and robust.


Author(s):  
Jianwei Wang ◽  
Yuxin Guo ◽  
Wei Kai

The robustness of complex networks responding to attacks has long been the focus of network science researching. Nonetheless, the precious studies mostly focus on network performance when facing malicious attacks and random failures while rarely pay attention to the influences of scales of attacking. It is wondering if it is an actual fact that the network is more fragile when attacking scale is exacerbated. In this paper, we are committed to exploring the influences related to the very factor of attacking scale from the perspective of cascading failure problem of dynamic network theory. We construct the model with a regular ranking edge deletion method by simulating attacking scale with [Formula: see text] and [Formula: see text] is denoted as attacked edge number. To be specific, we rank the edges according to initial distributed loads and delete edges in the ranked list, and subsequently observe the changes of robustness in the networks, including BA scale-free network, WS small-world network and several real traffic networks. During the process, an unusual counterintuitive phenomenon captures our attention that the network damages caused by attacks do not always grow with the increase of attacked edges number. We specifically demonstrate and analyze this abnormal cascading propagation phenomenon, ascribing this paradox to the dynamics of the load and the connections of the network structure. Our work may offer a new angle on better controlling the spread of cascading failure and remind the importance of effectively protecting networks from underlying dangers.


Author(s):  
Graziano Vernizzi ◽  
Henri Orland

This article deals with complex networks, and in particular small world and scale free networks. Various networks exhibit the small world phenomenon, including social networks and gene expression networks. The local ordering property of small world networks is typically associated with regular networks such as a 2D square lattice. The small world phenomenon can be observed in most scale free networks, but few small world networks are scale free. The article first provides a brief background on small world networks and two models of scale free graphs before describing the replica method and how it can be applied to calculate the spectral densities of the adjacency matrix and Laplacian matrix of a scale free network. It then shows how the effective medium approximation can be used to treat networks with finite mean degree and concludes with a discussion of the local properties of random matrices associated with complex networks.


Scale-free networks are a type of complex networks in which the degree distribution of the nodes is according to the power law. In this chapter, the author uses the widely studied Barabasi-Albert (BA) model to simulate the evolution of scale-free networks and study the temporal variation of degree centrality, eigenvector centrality, closeness centrality, and betweenness centrality of the nodes during the evolution of a scale-free network according to the BA model. The model works by adding new nodes to the network, one at a time, with the new node connected to m of the currently existing nodes. Accordingly, nodes that have been in the network for a longer time have greater chances of acquiring more links and hence a larger degree centrality. While the degree centrality of the nodes has been observed to show a concave down pattern of increase with time, the temporal (time) variation of the other centrality measures has not been analyzed until now.


2021 ◽  
Vol 24 (05) ◽  
Author(s):  
LUCIO BIGGIERO ◽  
ROBERT MAGNUSZEWSKI

In this paper, we investigate the ownership structure of the 3143 EU28 aerospace companies in 2019, and extend the analysis to the 2428 neighbor partners outside EU28 and/or aerospace. Different from the previous studies, we consider all equity capital flows regardless of their size, and their monetary value instead of the corresponding ownership share. We further innovate by applying new methods to measure degree of influence power and hierarchical structure. The resulting picture shows that between the pure EU28 aerospace companies: (i) ownership relationships concern only relatively few companies (10%), which trigger horizontal and vertical structures; (ii) density is extremely low; (iii) relationships are fully hierarchical with no cross-ownership; (iv) capital is seldom transferred across business groups; (v) most of the main topological parameters have a typically polarized scale-free structure. When including also the ownership neighbors, some of those traits change substantially: (i) the share of connected companies substantially grows up to 63%; (ii) size and length of the largest pyramidal structures will grow remarkably, reaching a top of 874 companies; (iii) the industry becomes a full small-world structure, thus allowing huge capital transfer across business groups. Finally, a dramatic financialization, meant as a pivotal and quantitatively heavy role of financial operators, emerges also as a clear characteristic of the extended network.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Feng Jie Xie ◽  
Jing Shi

The well-known “Bertrand paradox” describes a price competition game in which two competing firms reach an outcome where both charge a price equal to the marginal cost. The fact that the Bertrand paradox often goes against empirical evidences has intrigued many researchers. In this work, we study the game from a new theoretical perspective—an evolutionary game on complex networks. Three classic network models, square lattice, WS small-world network, and BA scale-free network, are used to describe the competitive relations among the firms which are bounded rational. The analysis result shows that full price keeping is one of the evolutionary equilibriums in a well-mixed interaction situation. Detailed experiment results indicate that the price-keeping phenomenon emerges in a square lattice, small-world network and scale-free network much more frequently than in a complete network which represents the well-mixed interaction situation. While the square lattice has little advantage in achieving full price keeping, the small-world network and the scale-free network exhibit a stronger capability in full price keeping than the complete network. This means that a complex competitive relation is a crucial factor for maintaining the price in the real world. Moreover, competition scale, original price, degree of cutting price, and demand sensitivity to price show a significant influence on price evolution on a complex network. The payoff scheme, which describes how each firm’s payoff is calculated in each round game, only influences the price evolution on the scale-free network. These results provide new and important insights for understanding price competition in the real world.


Sign in / Sign up

Export Citation Format

Share Document