Multi-channel Tactile Feedback Based on User Finger Speed

2021 ◽  
Vol 5 (ISS) ◽  
pp. 1-17
Author(s):  
Yosra Rekik ◽  
Edward Lank ◽  
Adnane Guettaf ◽  
Prof. Laurent Grisoni

Alongside vision and sound, hardware systems can be readily designed to support various forms of tactile feedback; however, while a significant body of work has explored enriching visual and auditory communication with interactive systems, tactile information has not received the same level of attention. In this work, we explore increasing the expressivity of tactile feedback by allowing the user to dynamically select between several channels of tactile feedback using variations in finger speed. In a controlled experiment, we show that a user can learn the dynamics of eyes-free tactile channel selection among different channels, and can reliable discriminate between different tactile patterns during multi-channel selection with an accuracy up to 90% when using two finger speed levels. We discuss the implications of this work for richer, more interactive tactile interfaces.

2019 ◽  
Vol 4 (27) ◽  
pp. eaau8892 ◽  
Author(s):  
Edoardo D’Anna ◽  
Giacomo Valle ◽  
Alberto Mazzoni ◽  
Ivo Strauss ◽  
Francesco Iberite ◽  
...  

Current myoelectric prostheses allow transradial amputees to regain voluntary motor control of their artificial limb by exploiting residual muscle function in the forearm. However, the overreliance on visual cues resulting from a lack of sensory feedback is a common complaint. Recently, several groups have provided tactile feedback in upper limb amputees using implanted electrodes, surface nerve stimulation, or sensory substitution. These approaches have led to improved function and prosthesis embodiment. Nevertheless, the provided information remains limited to a subset of the rich sensory cues available to healthy individuals. More specifically, proprioception, the sense of limb position and movement, is predominantly absent from current systems. Here, we show that sensory substitution based on intraneural stimulation can deliver position feedback in real time and in conjunction with somatotopic tactile feedback. This approach allowed two transradial amputees to regain high and close-to-natural remapped proprioceptive acuity, with a median joint angle reproduction precision of 9.1° and a median threshold to detection of passive movements of 9.5°, which was comparable with results obtained in healthy participants. The simultaneous delivery of position information and somatotopic tactile feedback allowed both amputees to discriminate the size and compliance of four objects with high levels of performance (75.5%). These results demonstrate that tactile information delivered via somatotopic neural stimulation and position information delivered via sensory substitution can be exploited simultaneously and efficiently by transradial amputees. This study paves a way to more sophisticated bidirectional bionic limbs conveying richer, multimodal sensations.


1994 ◽  
Vol 3 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Motoyuki Akamatsu ◽  
Sigeru Sato ◽  
I. Scott MacKenzie

A mouse was modified to add tactile and force display. Tactile feedback, or display, was added via a solenoid driving a small pin protruding through a hole in the mouse button. Force feedback was added via an electromagnet and an iron mouse pad. Both enhancements were embedded in the mouse casing, increasing its weight from 103 to 148 g. In a target selection task experiment, the addition of tactile information feedback reduced target selection times slightly, compared to the no additional feedback condition. A more pronounced effect was observed on the clicking time—the time to selection once the cursor entered the target. In this case, we observed a statistically significant speed-up of about 12% in the presence of tactile feedback. The modified mouse was also used in a test of virtual texture. The amplitude and frequency of solenoid pulses were varied according to the movement of the mouse and the underlying virtual texture. Subjects could reliably discriminate between different textures.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Ramiro Velázquez ◽  
Edwige Pissaloux ◽  
Aimé Lay-Ekuakille

Background.Tactile interfaces that stimulate the plantar surface with vibrations could represent a step forward toward the development of wearable, inconspicuous, unobtrusive, and inexpensive assistive devices for people with visual impairments.Objective.To study how people understand information through their feet and to maximize the capabilities of tactile-foot perception for assisting human navigation.Methods.Based on the physiology of the plantar surface, three prototypes of electronic tactile interfaces for the foot have been developed. With important technological improvements between them, all three prototypes essentially consist of a set of vibrating actuators embedded in a foam shoe-insole. Perceptual experiments involving direction recognition and real-time navigation in space were conducted with a total of 60 voluntary subjects.Results.The developed prototypes demonstrated that they are capable of transmitting tactile information that is easy and fast to understand. Average direction recognition rates were 76%, 88.3%, and 94.2% for subjects wearing the first, second, and third prototype, respectively. Exhibiting significant advances in tactile-foot stimulation, the third prototype was evaluated in navigation tasks. Results show that subjects were capable of following directional instructions useful for navigating spaces.Conclusion.Footwear providing tactile stimulation can be considered for assisting the navigation of people with visual impairments.


2021 ◽  
Author(s):  
Hanbit Jin ◽  
Yunjeong Kim ◽  
Wooseup Youm ◽  
Yulim Min ◽  
Chaehyun Lim ◽  
...  

Abstract For highly immersive telehaptic applications, skin-integrated, untethered, and highly pixelated transducer devices that can record and generate tactile stimuli are required. Here, we propose a skin-conformable tactile sensor and actuator array with high spatial resolution of 1.8 mm for realising untethered tactile communication on human skin. The tactile sensors are designed to exhibit ultra-flexibility and bimodal sensitivity to static and dynamic pressure. The actuators are miniaturised to sub-millimetre scale to provide sophisticated, high spatiotemporal resolution tactile feedback over a centimetre square area of the fingertip with the capacity to generate vibrotactile feedback under an external load of up to 529 kPa. Short time Fourier transform analysis showed that our telehaptic system can transmit various types of tactile stimuli, such as the shape of objects and letters, textures of fabrics, and vibration patterns with high fidelity.


2011 ◽  
Vol 23 (3) ◽  
pp. 360-369 ◽  
Author(s):  
Toshiharu Mukai ◽  
◽  
Shinya Hirano ◽  
Hiromichi Nakashima ◽  
Yuki Sakaida ◽  
...  

In aging societies, there is a strong demand for robotics to tackle with problems caused by the aging population. Patient transfer, such as lifting and moving a bedridden patient from a bed to a wheelchair and back, is one of the most physically challenging tasks in nursing care, the burden of which should be reduced by the introduction of robot technologies. To this end, we have developed a new prototype robot named RIBA having human-type arms with tactile sensors. RIBA succeeded in transferring a human from a bed to a wheelchair and back. The tactile sensors play important roles in sensor feedback and detection of instructions from the operator. In this paper, after outlining the concept and specifications of RIBA, we will explain the tactile information processing, its application to tactile feedback and instruction detection, and safety measures to realize patient transfer. The results of patient transfer experiments are also reported.


2007 ◽  
Vol 1 (3) ◽  
pp. 217-224 ◽  
Author(s):  
Saeed Sokhanvar ◽  
Mohammadreza Ramezanifard ◽  
Javad Dargahi ◽  
Muthukumaran Packirisamy

Minimally invasive sugery (MIS) has increasingly been used in different surgical routines despite having significant shortcomings such as a lack of tactile feedback. Restoring this missing tactile information, particularly the information gained through tissue palpation, would be a significant enhancement to MIS capabilities. Tissue palpation is particularly important and commonly used in locating embedded lumps. The present study is inspired by this major limitation of the MIS procedure and is aimed at developing a system to reconstruct the lost palpation capability of surgeons in an effective way. By collecting necessary information on the size and location of hidden features using MIS graspers equipped with tactile sensors, the information can be processed and graphically rendered to the surgeon. Therefore, using the proposed system, surgeons can identify the presence or absence, location, and approximate size of hidden lumps simply by grasping the target organ with a smart endoscopic grasper. The results of the conducted experiments on the prototyped MIS graspers represented by graphical images are compared with those of the finite element models.


2000 ◽  
Author(s):  
Peter Kammermeier ◽  
Martin Buss ◽  
Günther Schmidt

Abstract In this paper we present the design of a new tactile actuator array for the display of distributed tactile dynamic shape information in telepresence and Virtual Environment (VE) applications. In actuator design we focussed on high pin forces and a bandwidth sufficient for most one-fingered tactile shape exploration tasks performed by dynamic interaction. As a result, the overall device dimensions currently prohibit its attachment to the effector of typical kinesthetic feedback devices. Experimental results are presented using the prototype in a finger-on-conveyer-belt scenario with objects moving relative to a resting fingertip. Experiments showed that the dynamic tactile display enabled probands to give parameter estimates of displayed objects with an accuracy exceeding the pin resolution of the tactile feedback device.


Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 225 ◽  
Author(s):  
Takashi Yamauchi ◽  
Jinsil Seo ◽  
Annie Sungkajun

Using a multisensory interface system, we examined how people’s emotional experiences change as their tactile sense (touching a plant) was augmented with visual sense (“seeing” their touch). Our system (the Interactive Plant system) senses the electrical capacitance of the human body and visualizes users’ tactile information on a flat screen (when the touch is gentle, the program draws small and thin roots around the pot; when the touch is more harsh or abrupt, big and thick roots are displayed). We contrasted this multimodal combination (touch + vision) with a unimodal interface (touch only or watch only) and measured the impact of the multimodal interaction on participants’ emotion. We found significant emotional gains in the multimodal interaction. Participants’ self-reported positive affect, joviality, attentiveness and self-assurance increased dramatically in multimodal interaction relative to unimodal interaction; participants’ electrodermal activity (EDA) increased in the multimodal condition, suggesting that our plant-based multisensory visual-tactile interaction raised arousal. We suggest that plant-based tactile interfaces are advantageous for emotion generation because haptic perception is by nature embodied and emotional.


2021 ◽  
Author(s):  
James M Conner ◽  
Andrew Bohannon ◽  
Masakazu Igarashi ◽  
James Taniguchi ◽  
Nicholas Baltar ◽  
...  

While dexterity relies on the constant transmission of sensory information, unchecked feedback can be disruptive to behavior. Yet how somatosensory feedback from the hands is regulated as it first enters the brain, and whether this modulation exerts any influence on movement, remain unclear. Leveraging molecular-genetic access in mice, we find that tactile afferents from the hand recruit neurons in the brainstem cuneate nucleus whose activity is modulated by distinct classes of local inhibitory neurons. Selective manipulation of these inhibitory circuits can suppress or enhance the transmission of tactile information, affecting behaviors that rely on movement of the hands. Investigating whether these local circuits are subject to top-down control, we identify distinct descending cortical pathways that innervate cuneate in a complementary pattern. Somatosensory cortical neurons target the core tactile region of cuneate, while a large rostral cortical population drives feed-forward inhibition of tactile transmission through an inhibitory shell. These findings identify a circuit basis for tactile feedback modulation, enabling the effective execution of dexterous movement.


Sign in / Sign up

Export Citation Format

Share Document