Working Together Apart through Embodiment

2022 ◽  
Vol 6 (GROUP) ◽  
pp. 1-25
Author(s):  
Guo Freeman ◽  
Dane Acena ◽  
Nathan J. McNeese ◽  
Kelsea Schulenberg

Computer-mediated collaboration has long been a core research interest in CSCW and HCI. As online social spaces continue to evolve towards more immersive and higher fidelity experiences, more research is still needed to investigate how emerging novel technology may foster and support new and more nuanced forms and experiences of collaboration in virtual environments. Using 30 interviews, this paper focuses on what people may collaborate on and how they collaborate in social Virtual Reality (VR). We broaden current studies on computer-mediated collaboration by highlighting the importance of embodiment for co-presence and communication, replicating offline collaborative activities, and supporting the seamless interplay of work, play, and mundane experiences in everyday lives for experiencing and conceptualizing collaboration in emerging virtual environments. We also propose potential design implications that could further support everyday collaborative activities in social VR

2011 ◽  
pp. 1108-1114
Author(s):  
Christos J Bouras ◽  
Eri Giannaka ◽  
Thrasyvoulos Tsiatsos

The inherent need of humans to communicate acted as the moving force for the formation, expansion and wide adoption of the Internet. The need for communication and collaboration from distance resulted in the evolution of the primitive services originally offered (i.e., e-mail) to advanced applications, which offer a high sense of realism to the user, forming a reality, the so-called virtual reality. Even though virtual environments were first introduced as stand alone applications, which could run on a single computer, the promising functionalities of this new form of representation and interaction as well as the familiarity of the users with it drew increased research interest. This fact resulted in virtual reality to be viewed as the solution for achieving communication and collaboration between scattered users, in various areas of interest, such as entertainment, learning, training, etc. This led to the creation of Networked Virtual Environments (NVEs). In particular, NVEs were first introduced in the 1980’s and the first areas that exploited the newborn technology were military and entertainment applications. In particular, the U.S Department of Defense played an important role to the direction of applications, protocols and architectures for this promising technology. In the 1990’s, where academic networks became a reality, NVEs drew increased academic research interest and a variety of applications and platforms were developed. In particular, the academic community has reinvented, extended, and documented what the Department of Defense has done. The evolution and the results extracted by research on this field were widely adopted from multiple areas of interest, with main representative the entertainment area. Since 2000, where virtual reality technology, processing power of computers and the network were significantly improved, a wide variety of systems, protocols and applications were developed. In particular, the familiarization the end users with the Internet and the promising advantages and opportunities of Virtual Reality contributed to currently view NVEs as an effective tool for supporting communication and collaboration of scattered users. Currently, the application areas of NVEs have been widely expanded and their use can be found at military and industrial team training, collaborative design and engineering, multiplayer games (Zyda, 2005), mobile entertainment, virtual shopping malls, online tradeshows and conferences, remote customer support, distance learning and training, science, arts, industry, etc. Summarizing, NVEs nowadays tend to consist a powerful tool for communication and collaboration, with applications ranging from entertainment and teleshopping to engineering and medicine. To this direction, in the recent years important active research on this topic in both academic and industrial research is taking place.


Author(s):  
Christos Bouras ◽  
Eri Giannaka ◽  
Thrasyvoulos Tsiatsos

The inherent need of humans to communicate acted as the moving force for the formation, expansion and wide adoption of the Internet. The need for communication and collaboration from distance resulted in the evolution of the primitive services originally offered (i.e., e-mail) to advanced applications, which offer a high sense of realism to the user, forming a reality, the so-called virtual reality. Even though virtual environments were first introduced as stand alone applications, which could run on a single computer, the promising functionalities of this new form of representation and interaction as well as the familiarity of the users with it drew increased research interest. This fact resulted in virtual reality to be viewed as the solution for achieving communication and collaboration between scattered users, in various areas of interest, such as entertainment, learning, training, etc. This led to the creation of Networked Virtual Environments (NVEs). In particular, NVEs were first introduced in the 1980’s and the first areas that exploited the newborn technology were military and entertainment applications. In particular, the U.S Department of Defense played an important role to the direction of applications, protocols and architectures for this promising technology. In the 1990’s, where academic networks became a reality, NVEs drew increased academic research interest and a variety of applications and platforms were developed. In particular, the academic community has reinvented, extended, and documented what the Department of Defense has done. The evolution and the results extracted by research on this field were widely adopted from multiple areas of interest, with main representative the entertainment area. Since 2000, where virtual reality technology, processing power of computers and the network were significantly improved, a wide variety of systems, protocols and applications were developed. In particular, the familiarization the end users with the Internet and the promising advantages and opportunities of Virtual Reality contributed to currently view NVEs as an effective tool for supporting communication and collaboration of scattered users. Currently, the application areas of NVEs have been widely expanded and their use can be found at military and industrial team training, collaborative design and engineering, multiplayer games (Zyda, 2005), mobile entertainment, virtual shopping malls, online tradeshows and conferences, remote customer support, distance learning and training, science, arts, industry, etc. Summarizing, NVEs nowadays tend to consist a powerful tool for communication and collaboration, with applications ranging from entertainment and teleshopping to engineering and medicine. To this direction, in the recent years important active research on this topic in both academic and industrial research is taking place.


2020 ◽  
pp. 002248712093954
Author(s):  
Karl W. Kosko ◽  
Richard E. Ferdig ◽  
Maryam Zolfaghari

Use of video as a representation of practice in teacher education is commonplace. The current study explored the use of a new format (360 video) in the context of preservice teachers’ professional noticing. Findings suggest that preservice teachers viewing 360 videos attended to more student actions than their peers viewing standard video. In addition, using a virtual reality headset to view the 360 videos led to different patterns in where preservice teachers looked in the recorded classroom, and to increased specificity of mathematics content from the scenario. Thus, findings and results support the use of 360 video in teacher education to facilitate teacher noticing. However, future research is needed to further explore this novel technology.


2020 ◽  
Vol 11 (1) ◽  
pp. 99-106
Author(s):  
Marián Hudák ◽  
Štefan Korečko ◽  
Branislav Sobota

AbstractRecent advances in the field of web technologies, including the increasing support of virtual reality hardware, have allowed for shared virtual environments, reachable by just entering a URL in a browser. One contemporary solution that provides such a shared virtual reality is LIRKIS Global Collaborative Virtual Environments (LIRKIS G-CVE). It is a web-based software system, built on top of the A-Frame and Networked-Aframe frameworks. This paper describes LIRKIS G-CVE and introduces its two original components. The first one is the Smart-Client Interface, which turns smart devices, such as smartphones and tablets, into input devices. The advantage of this component over the standard way of user input is demonstrated by a series of experiments. The second component is the Enhanced Client Access layer, which provides access to positions and orientations of clients that share a virtual environment. The layer also stores a history of connected clients and provides limited control over the clients. The paper also outlines an ongoing experiment aimed at an evaluation of LIRKIS G-CVE in the area of virtual prototype testing.


Author(s):  
Sarah Beadle ◽  
Randall Spain ◽  
Benjamin Goldberg ◽  
Mahdi Ebnali ◽  
Shannon Bailey ◽  
...  

Virtual environments and immersive technologies are growing in popularity for human factors purposes. Whether it is training in a low-risk environment or using simulated environments for testing future automated vehicles, virtual environments show promise for the future of our field. The purpose of this session is to have current human factors practitioners and researchers demonstrate their immersive technologies. This is the eighth iteration of the “Me and My VE” interactive session. Presenters in this session will provide a brief introduction of their virtual reality, augmented reality, or virtual environment work before engaging with attendees in an interactive demonstration period. During this period, the presenters will each have a multimedia display of their immersive technology as well as discuss their work and development efforts. The selected demonstrations cover issues of designing immersive interfaces, military and medical training, and using simulation to better understand complex tasks. This includes a mix of government, industry, and academic-based work. Attendees will be virtually immersed in the technologies and research presented allowing for interaction with the work being done in this field.


Author(s):  
Silvia Francesca Maria Pizzoli ◽  
Dario Monzani ◽  
Laura Vergani ◽  
Virginia Sanchini ◽  
Ketti Mazzocco

AbstractIn recent years, virtual reality (VR) has been effectively employed in several settings, ranging from health care needs to leisure and gaming activities. A new application of virtual stimuli appeared in social media: in the documentary ‘I met you’ from the South-Korean Munhwa Broadcasting, a mother made the experience of interacting with the avatar of the seven-year-old daughter, who died four years before. We think that this new application of virtual stimuli should open a debate on its possible implications: it represents contents related to grief, a dramatic and yet natural experience, that can have deep psychological impacts on fragile subjects put in virtual environments. In the present work, possible side-effects, as well as hypothetical therapeutical application of VR for the treatment of mourning, are discussed.


2021 ◽  
Vol 11 (4) ◽  
pp. 1510
Author(s):  
Charles Morizio ◽  
Maxime Billot ◽  
Jean-Christophe Daviet ◽  
Stéphane Baudry ◽  
Christophe Barbanchon ◽  
...  

People who survive a stroke are often left with long-term neurologic deficits that induce, among other impairments, balance disorders. While virtual reality (VR) is growing in popularity for postural control rehabilitation in post-stroke patients, studies on the effect of challenging virtual environments, simulating common daily situations on postural control in post-stroke patients, are scarce. This study is a first step to document the postural response of stroke patients to different challenging virtual environments. Five subacute stroke patients and fifteen age-matched healthy adults were included. All participants underwent posturographic tests in control conditions (open and closed eyes) and virtual environment without (one static condition) and with avatars (four dynamic conditions) using a head-mounted device for VR. In dynamic environments, we modulated the density of the virtual crowd (dense and light crowd) and the avoidance space with the avatars (near or far). Center of pressure velocity was collected by trial throughout randomized 30-s periods. Results showed that more challenging conditions (dynamic condition) induced greater postural disturbances in stroke patients than in healthy counterparts. Our study suggests that virtual reality environments should be adjusted in light of obtaining more or less challenging conditions.


2018 ◽  
Vol 10 ◽  
pp. 117957351881354 ◽  
Author(s):  
Thais Massetti ◽  
Talita Dias da Silva ◽  
Tânia Brusque Crocetta ◽  
Regiani Guarnieri ◽  
Bruna Leal de Freitas ◽  
...  

Background: Virtual reality (VR) experiences (through games and virtual environments) are increasingly being used in physical, cognitive, and psychological interventions. However, the impact of VR as an approach to rehabilitation is not fully understood, and its advantages over traditional rehabilitation techniques are yet to be established. Method: We present a systematic review which was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). During February and March of 2018, we conducted searches on PubMed (Medline), Virtual Health Library Search Portal databases (BVS), Web of Science (WOS), and Embase for all VR-related publications in the past 4 years (2015, 2016, 2017, and 2018). The keywords used in the search were “neurorehabilitation” AND “Virtual Reality” AND “devices.” Results: We summarize the literature which highlights that a range of effective VR approaches are available. Studies identified were conducted with poststroke patients, patients with cerebral palsy, spinal cord injuries, and other pathologies. Healthy populations have been used in the development and testing of VR approaches meant to be used in the future by people with neurological disorders. A range of benefits were associated with VR interventions, including improvement in motor functions, greater community participation, and improved psychological and cognitive function. Conclusions: The results from this review provide support for the use of VR as part of a neurorehabilitation program in maximizing recovery.


2003 ◽  
Vol 51 (4) ◽  
pp. 302-315 ◽  
Author(s):  
Evelyn K. Orman

This study is an examination of the effect of computer-generated virtual reality graded exposure on the physiological and psychological responses of performing musicians. Eight university saxophone majors, five men and three women, participated in twelve 15- to 20-minute weekly practice sessions during which they were immersed in one of four different virtual environments designed to elicit various anxiety levels. Baseline heart rates and subjective measurements were taken prior to immersion and continued throughout the exposure period. In addition, heart rate and subjective measurements were recorded for three live performances given by each subject before beginning the virtual reality exposure and after completion of the sixth and the twelfth exposure sessions. Findings indicated that the virtual environments did elicit a sense of presence and may have provided the means for desensitization. Heart-rate readings and psychological indications of anxiety did not always correspond.


Sign in / Sign up

Export Citation Format

Share Document