CSMC

Author(s):  
Hai Wang ◽  
Baoshen Guo ◽  
Shuai Wang ◽  
Tian He ◽  
Desheng Zhang

The rise concern about mobile communication performance has driven the growing demand for the construction of mobile network signal maps which are widely utilized in network monitoring, spectrum management, and indoor/outdoor localization. Existing studies such as time-consuming and labor-intensive site surveys are difficult to maintain an update-to-date finegrained signal map within a large area. The mobile crowdsensing (MCS) paradigm is a promising approach for building signal maps because collecting large-scale MCS data is low-cost and with little extra-efforts. However, the dynamic environment and the mobility of the crowd cause spatio-temporal uncertainty and sparsity of MCS. In this work, we leverage MCS as an opportunity to conduct the city-wide mobile network signal map construction. We propose a fine-grained city-wide Cellular Signal Map Construction (CSMC) framework to address two challenges including (i) the problem of missing and unreliable MCS data; (ii) spatio-temporal uncertainty of signal propagation. In particular, CSMC captures spatio-temporal characteristics of signals from both inter- and intra- cellular base stations and conducts missing signal recovery with Bayesian tensor decomposition to build large-area fine-grained signal maps. Furthermore, CSMC develops a context-aware multi-view fusion network to make full use of external information and enhance signal map construction accuracy. To evaluate the performance of CSMC, we conduct extensive experiments and ablation studies on a large-scale dataset with over 200GB MCS signal records collected from Shanghai. Experimental results demonstrate that our model outperforms state-of-the-art baselines in the accuracy of signal estimation and user localization.

Author(s):  
SHYAM D. BAWANKAR ◽  
SONAL B. BHOPLE ◽  
VISHAL D. JAISWAL

Large-scale networks of wireless sensors are becoming an active topic of research.. We review the key elements of the emergent technology of “Smart Dust” and outline the research challenges they present to the mobile networking and systems community, which must provide coherent connectivity to large numbers of mobile network nodes co-located within a small volume. Smart Dust sensor networks – consisting of cubic millimeter scale sensor nodes capable of limited computation, sensing, and passive optical communication with a base station – are envisioned to fulfil complex large scale monitoring tasks in a wide variety of application areas. RFID technology can realize “smart-dust” applications for the sensor network community. RFID sensor networks (RSNs), which consist of RFID readers and RFID sensor nodes (WISPs), extend RFID to include sensing and bring the advantages of small, inexpensive and long-lived RFID tags to wireless sensor networks. In many potential Smart Dust applications such as object detection and tracking, fine-grained node localization plays a key role.


2020 ◽  
Vol 6 ◽  
pp. e276 ◽  
Author(s):  
James R. Watson ◽  
Zach Gelbaum ◽  
Mathew Titus ◽  
Grant Zoch ◽  
David Wrathall

When, where and how people move is a fundamental part of how human societies organize around every-day needs as well as how people adapt to risks, such as economic scarcity or instability, and natural disasters. Our ability to characterize and predict the diversity of human mobility patterns has been greatly expanded by the availability of Call Detail Records (CDR) from mobile phone cellular networks. The size and richness of these datasets is at the same time a blessing and a curse: while there is great opportunity to extract useful information from these datasets, it remains a challenge to do so in a meaningful way. In particular, human mobility is multiscale, meaning a diversity of patterns of mobility occur simultaneously, which vary according to timing, magnitude and spatial extent. To identify and characterize the main spatio-temporal scales and patterns of human mobility we examined CDR data from the Orange mobile network in Senegal using a new form of spectral graph wavelets, an approach from manifold learning. This unsupervised analysis reduces the dimensionality of the data to reveal seasonal changes in human mobility, as well as mobility patterns associated with large-scale but short-term religious events. The novel insight into human mobility patterns afforded by manifold learning methods like spectral graph wavelets have clear applications for urban planning, infrastructure design as well as hazard risk management, especially as climate change alters the biophysical landscape on which people work and live, leading to new patterns of human migration around the world.


2019 ◽  
Vol 375 (1791) ◽  
pp. 20180522 ◽  
Author(s):  
Mante S. Nieuwland ◽  
Dale J. Barr ◽  
Federica Bartolozzi ◽  
Simon Busch-Moreno ◽  
Emily Darley ◽  
...  

Composing sentence meaning is easier for predictable words than for unpredictable words. Are predictable words genuinely predicted, or simply more plausible and therefore easier to integrate with sentence context? We addressed this persistent and fundamental question using data from a recent, large-scale ( n = 334) replication study, by investigating the effects of word predictability and sentence plausibility on the N400, the brain's electrophysiological index of semantic processing. A spatio-temporally fine-grained mixed-effect multiple regression analysis revealed overlapping effects of predictability and plausibility on the N400, albeit with distinct spatio-temporal profiles. Our results challenge the view that the predictability-dependent N400 reflects the effects of either prediction or integration, and suggest that semantic facilitation of predictable words arises from a cascade of processes that activate and integrate word meaning with context into a sentence-level meaning. This article is part of the theme issue ‘Towards mechanistic models of meaning composition’.


Author(s):  
G. Magallanes Guijón ◽  
F. Hruby ◽  
R. Ressl ◽  
V. Aguilar Sierra ◽  
G. de la Borbolla del Valle ◽  
...  

<p><strong>Abstract.</strong> Immersive technologies allow us to map physical reality by means of 4D virtual systems in ever higher spatial and temporal detail, up to a scale level of 1<span class="thinspace"></span>:<span class="thinspace"></span>1. This level of detail enables the representation of phenomena that have been widely ignored by the geovisualization research agenda as yet. An example for such a large scale phenomenon is the collective movement of animals, which can be modelled and visualized only at a fine grained spatio-temporal resolution. This paper focuses on how collective movement can be modelled in an immersive virtual reality (VR) geovisualization. In a brief introduction on immersion and spatial presence we will argue, that high fidelity and realistic VR can strengthen the users’ involvement with the issues visualized. We will then discuss basic characteristics of swarming in nature and review the principal models that have been presented to formalize this collective behavior. Based on the rules of (1) collision avoidance, (2) polarization, (3) aggregation and (4) self-organized criticality we will formulate a viable solution of modelling collective movement within a geovisualization immersive virtual environment. An example of use and results will be presented.</p>


Author(s):  
S. Bhattacharya ◽  
C. Braun ◽  
U. Leopold

Abstract. In this paper, we address the curse of dimensionality and scalability issues while managing vast volumes of multidimensional raster data in the renewable energy modeling process in an appropriate spatial and temporal context. Tensor representation provides a convenient way to capture inter-dependencies along multiple dimensions. In this direction, we propose a sophisticated way of handling large-scale multi-layered spatio-temporal data, adopted for raster-based geographic information systems (GIS). We chose Tensorflow, an open source software library developed by Google using data flow graphs, and the tensor data structure. We provide a comprehensive performance evaluation of the proposed model against r.sun in GRASS GIS. Benchmarking shows that the tensor-based approach outperforms by up to 60%, concerning overall execution time for high-resolution datasets and fine-grained time intervals for daily sums of solar irradiation [Wh.m-2.day-1].


2021 ◽  
Vol 9 ◽  
pp. 995-1011
Author(s):  
Takuma Udagawa ◽  
Akiko Aizawa

Abstract Common grounding is the process of creating and maintaining mutual understandings, which is a critical aspect of sophisticated human communication. While various task settings have been proposed in existing literature, they mostly focus on creating common ground under a static context and ignore the aspect of maintaining them overtime under dynamic context. In this work, we propose a novel task setting to study the ability of both creating and maintaining common ground in dynamic environments. Based on our minimal task formulation, we collected a large-scale dataset of 5,617 dialogues to enable fine-grained evaluation and analysis of various dialogue systems. Through our dataset analyses, we highlight novel challenges introduced in our setting, such as the usage of complex spatio-temporal expressions to create and maintain common ground. Finally, we conduct extensive experiments to assess the capabilities of our baseline dialogue system and discuss future prospects of our research.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaojuan Wei ◽  
Jinglin Li ◽  
Quan Yuan ◽  
Kaihui Chen ◽  
Ao Zhou ◽  
...  

Predicting traffic conditions for road segments is the prelude of working on intelligent transportation. Many existing methods can be used for short-term or long-term traffic prediction, but they focus more on regions than on road segments. The lack of fine-grained traffic predicting approach hinders the development of ITS. Therefore, MapLSTM, a spatio-temporal long short-term memory network preluded by map-matching, is proposed in this paper to predict fine-grained traffic conditions. MapLSTM first obtains the historical and real-time traffic conditions of road segments via map-matching. Then LSTM is used to predict the conditions of the corresponding road segments in the future. Breaking the single-index forecasting, MapLSTM can predict the vehicle speed, traffic volume, and the travel time in different directions of road segments simultaneously. Experiments confirmed MapLSTM can not only achieve prediction for road segments based a large scale of GPS trajectories effectively but also have higher predicting accuracy than GPR and ConvLSTM. Moreover, we demonstrate that MapLSTM can serve various applications in a lightweight way, such as cognizing driving preferences, learning navigation, and inferring traffic emissions.


2020 ◽  
Vol 28 (4) ◽  
pp. 248-258
Author(s):  
Martin Šveda ◽  
Michala Sládeková Madajová ◽  
Peter Barlík ◽  
František Križan ◽  
Pavel Šuška

AbstractMobile phone data are considered one of the most promising information sources for monitoring and measuring the spatio-temporal activities of the population. Today, large-volume mobile phone datasets are widely applied to monitor the daily life of the urban population and to examine the structuring of the urban environment. In this paper, we discuss and develop a methodological procedure that uses such data to observe temporal differences of human presence in Bratislava, Slovakia. The study is based on a large-scale dataset of hourly records of signalling exchanges (VLR data) from all major mobile network operators in Slovakia. The records of the mobile network infrastructure are used as a suitable proxy variable for complex human activity at the city level, in the sense that they capture various kinds of spatial practices, and not only some specific activities (work cycle of a given locale, shopping, and similar events). Such an approach allows the classification of urban space using diurnal logs activity curves of mobile network cells. Six temporality types in Bratislava were identified, which may be designated as examples of an urban chronopolis. The results show the potential of the proposed method for measuring place temporality in cities and monitoring the urban environment with geo-referenced mobile phone data.


2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Arturo Basaure ◽  
Heikki Kokkinen ◽  
Heikki Hämmäinen ◽  
V. Sridhar

Radio spectrum for commercial mobile services continues to be scarce. Countries around the world have recognized the importance of efficient utilization of this scarce resource and have initiated regulatory and policy steps towards flexible approaches to spectrum management, including sharing of licensed spectrum, and releasing unlicensed spectrum for mobile services. Technologies for shared access and the associated standardization activities have also progressed towards possible large scale deployments. In this paper, we analyze the evolution of spectrum management policies using a causal model and indicate how the markets can lock in to either centralized or flexible approach. We also cite a use case of a flexible spectrum management approach using spectrum band fill option and indicate its suitability to the Indian context.


2018 ◽  
Vol 14 (12) ◽  
pp. 1915-1960 ◽  
Author(s):  
Rudolf Brázdil ◽  
Andrea Kiss ◽  
Jürg Luterbacher ◽  
David J. Nash ◽  
Ladislava Řezníčková

Abstract. The use of documentary evidence to investigate past climatic trends and events has become a recognised approach in recent decades. This contribution presents the state of the art in its application to droughts. The range of documentary evidence is very wide, including general annals, chronicles, memoirs and diaries kept by missionaries, travellers and those specifically interested in the weather; records kept by administrators tasked with keeping accounts and other financial and economic records; legal-administrative evidence; religious sources; letters; songs; newspapers and journals; pictographic evidence; chronograms; epigraphic evidence; early instrumental observations; society commentaries; and compilations and books. These are available from many parts of the world. This variety of documentary information is evaluated with respect to the reconstruction of hydroclimatic conditions (precipitation, drought frequency and drought indices). Documentary-based drought reconstructions are then addressed in terms of long-term spatio-temporal fluctuations, major drought events, relationships with external forcing and large-scale climate drivers, socio-economic impacts and human responses. Documentary-based drought series are also considered from the viewpoint of spatio-temporal variability for certain continents, and their employment together with hydroclimate reconstructions from other proxies (in particular tree rings) is discussed. Finally, conclusions are drawn, and challenges for the future use of documentary evidence in the study of droughts are presented.


Sign in / Sign up

Export Citation Format

Share Document