scholarly journals My(o) Armband Leaks Passwords

Author(s):  
Matthias Gazzari ◽  
Annemarie Mattmann ◽  
Max Maass ◽  
Matthias Hollick

Wearables that constantly collect various sensor data of their users increase the chances for inferences of unintentional and sensitive information such as passwords typed on a physical keyboard. We take a thorough look at the potential of using electromyographic (EMG) data, a sensor modality which is new to the market but has lately gained attention in the context of wearables for augmented reality (AR), for a keylogging side-channel attack. Our approach is based on neural networks for a between-subject attack in a realistic scenario using the Myo Armband to collect the sensor data. In our approach, the EMG data has proven to be the most prominent source of information compared to the accelerometer and gyroscope, increasing the keystroke detection performance. For our end-to-end approach on raw data, we report a mean balanced accuracy of about 76 % for the keystroke detection and a mean top-3 key accuracy of about 32 % on 52 classes for the key identification on passwords of varying strengths. We have created an extensive dataset including more than 310 000 keystrokes recorded from 37 volunteers, which is available as open access along with the source code used to create the given results.

2019 ◽  
Vol 9 (5) ◽  
pp. 944 ◽  
Author(s):  
Samira Briongos ◽  
Pedro Malagón ◽  
Juan-Mariano de Goyeneche ◽  
Jose Moya

The CPU cache is a hardware element that leaks significant information about the software running on the CPU. Particularly, any application performing sequences of memory access that depend on sensitive information, such as private keys, is susceptible to suffer a cache attack, which would reveal this information. In most cases, side-channel cache attacks do not require any specific permission and just need access to a shared cache. This fact, combined with the spread of cloud computing, where the infrastructure is shared between different customers, has made these attacks quite popular. Traditionally, cache attacks against AES use the information about the victim to access an address. In contrast, we show that using non-access provides much more information and demonstrate that the power of cache attacks has been underestimated during these last years. This novel approach is applicable to existing attacks: Prime+Probe, Flush+Reload, Flush+Flush and Prime+Abort. In all cases, using cache misses as source of information, we could retrieve the 128-bit AES key with a reduction in the number of samples of between 93% and 98% compared to the traditional approach. Further, this attack was adapted and extended in what we call the encryption-by-decryption cache attack (EBD), to obtain a 256-bit AES key. In the best scenario, our approach obtained the 256 bits of the key of the OpenSSL AES T-table-based implementation using fewer than 10,000 samples, i.e., 135 milliseconds, proving that AES-256 is only about three times more complex to attack than AES-128 via cache attacks. Additionally, the proposed approach was successfully tested in a cross-VM scenario.


2020 ◽  
Author(s):  
Robail Yasrab ◽  
Michael P Pound ◽  
Andrew P French ◽  
Tony P Pridmore

AbstractThis research will explore the phenotype-genotype gap by bringing two very diverse technologies together to predict plant characteristics. Currently, there are several studies and tools available for plant phenotype and genotype analysis. However, there is no existing single system that offers both capabilities in one package. Usually, Convolution Neural Networks used for plant phenotyping analysis and Recurrent Neural Networks used for genotype analysis. Both of these machine leanring methods require different input data for feature extraction, analysis and learning. Building a machine learning system for plant data that can make use of both graphic (for phenotype) and time-series (for genotype) is critical and challenging, especially when the system has to predict sensitive information regarding plant growth, accession and types. In this study, the proposed system will solve these problems by bringing two very different technologies, analysis methods and datasets. The proposed research aims to bridge the phenotype-genotype gap using CNN-LSTMs to process graphic and temporal data of plant roots. The proposed system “PhenomNet” offers segmentation of plant roots along with the classification of the given dataset into different accessions. The experiment results have shown that proposed CNN-LSTM architecture provides very high accuracy in comparison to manual or semi-automated approaches.


2020 ◽  
Vol 2020 (1) ◽  
pp. 91-95
Author(s):  
Philipp Backes ◽  
Jan Fröhlich

Non-regular sampling is a well-known method to avoid aliasing in digital images. However, the vast majority of single sensor cameras use regular organized color filter arrays (CFAs), that require an optical-lowpass filter (OLPF) and sophisticated demosaicing algorithms to suppress sampling errors. In this paper a variety of non-regular sampling patterns are evaluated, and a new universal demosaicing algorithm based on the frequency selective reconstruction is presented. By simulating such sensors it is shown that images acquired with non-regular CFAs and no OLPF can lead to a similar image quality compared to their filtered and regular sampled counterparts. The MATLAB source code and results are available at: http://github. com/PhilippBackes/dFSR


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1685
Author(s):  
Sakorn Mekruksavanich ◽  
Anuchit Jitpattanakul

Sensor-based human activity recognition (S-HAR) has become an important and high-impact topic of research within human-centered computing. In the last decade, successful applications of S-HAR have been presented through fruitful academic research and industrial applications, including for healthcare monitoring, smart home controlling, and daily sport tracking. However, the growing requirements of many current applications for recognizing complex human activities (CHA) have begun to attract the attention of the HAR research field when compared with simple human activities (SHA). S-HAR has shown that deep learning (DL), a type of machine learning based on complicated artificial neural networks, has a significant degree of recognition efficiency. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are two different types of DL methods that have been successfully applied to the S-HAR challenge in recent years. In this paper, we focused on four RNN-based DL models (LSTMs, BiLSTMs, GRUs, and BiGRUs) that performed complex activity recognition tasks. The efficiency of four hybrid DL models that combine convolutional layers with the efficient RNN-based models was also studied. Experimental studies on the UTwente dataset demonstrated that the suggested hybrid RNN-based models achieved a high level of recognition performance along with a variety of performance indicators, including accuracy, F1-score, and confusion matrix. The experimental results show that the hybrid DL model called CNN-BiGRU outperformed the other DL models with a high accuracy of 98.89% when using only complex activity data. Moreover, the CNN-BiGRU model also achieved the highest recognition performance in other scenarios (99.44% by using only simple activity data and 98.78% with a combination of simple and complex activities).


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6119
Author(s):  
Mircea Hulea ◽  
Zabih Ghassemlooy ◽  
Sujan Rajbhandari ◽  
Othman Isam Younus ◽  
Alexandru Barleanu

Recently, neuromorphic sensors, which convert analogue signals to spiking frequencies, have been reported for neurorobotics. In bio-inspired systems these sensors are connected to the main neural unit to perform post-processing of the sensor data. The performance of spiking neural networks has been improved using optical synapses, which offer parallel communications between the distanced neural areas but are sensitive to the intensity variations of the optical signal. For systems with several neuromorphic sensors, which are connected optically to the main unit, the use of optical synapses is not an advantage. To address this, in this paper we propose and experimentally verify optical axons with synapses activated optically using digital signals. The synaptic weights are encoded by the energy of the stimuli, which are then optically transmitted independently. We show that the optical intensity fluctuations and link’s misalignment result in delay in activation of the synapses. For the proposed optical axon, we have demonstrated line of sight transmission over a maximum link length of 190 cm with a delay of 8 μs. Furthermore, we show the axon delay as a function of the illuminance using a fitted model for which the root mean square error (RMS) similarity is 0.95.


Sign in / Sign up

Export Citation Format

Share Document