CycleGuard

Author(s):  
Wenqiang Jin ◽  
Srinivasan Murali ◽  
Youngtak Cho ◽  
Huadi Zhu ◽  
Tianhao Li ◽  
...  

Every year 41,000 cyclists die in road traffic-related incidents worldwide [47]. One of the most startling and infuriating conflicts that cyclists experience is the so-called "right hook". It refers to a vehicle striking a cyclist heading in the same direction by turning right into the cyclist. To prevent such a crash, this work presents CycleGuard, an acoustic-based collision detection system using smartphones. It is composed of a cheap commercial off-the-shelf (COTS) portable speaker that emits imperceptible high-frequency acoustic signals and a smartphone for reflected signal reception and analysis. Since received acoustic signals bear rich information of their reflecting objects, CycleGuard applies advanced acoustic ranging techniques to extract those information for traffic analysis. Cyclists are alerted if any pending right hook crashes are detected. Real-time alerts ensure that cyclists have sufficient time to react, apply brakes, and eventually avoid the hazard. To validate the efficacy of CycleGuard, we implement a proof-of-concept prototype and carry out extensive in-field experiments under a broad spectrum of settings. Results show that CycleGuard achieves up to 95% accuracy in preventing right hook crashes and is robust to various scenarios. It is also energy-friendly to run on battery-powered smartphones.

SIMULATION ◽  
2021 ◽  
pp. 003754972110047
Author(s):  
Muhammad A Butt ◽  
Faisal Riaz ◽  
Yasir Mehmood ◽  
Somyyia Akram

Rear-end collision detection and avoidance is one of the most crucial driving tasks of self-driving vehicles. Mathematical models and fuzzy logic-based methods have recently been proposed to improve the effectiveness of the rear-end collision detection and avoidance systems in autonomous vehicles (AVs). However, these methodologies do not tackle real-time object detection and response problems in dense/dynamic road traffic conditions due to their complex computation and decision-making structures. In our previous work, we presented an affective computing-inspired Enhanced Emotion Enabled Cognitive Agent (EEEC_Agent), which is capable of rear-end collision avoidance using artificial human driver emotions. However, the architecture of the EEEC_Agent is based on an ultrasonic sensory system which follows three-state driving strategies without considering the neighbor vehicles types. To address these issues, in this paper we propose an extended version of the EEEC_Agent which contains human driver-inspired dynamic driving mode controls for autonomous vehicles. In addition, a novel end-to-end learning-based motion planner has been devised to perceive the surrounding environment and regulate driving tasks accordingly. The real-time in-field experiments performed using a prototype AV demonstrate the effectiveness of this proposed rear-end collision avoidance system.


2020 ◽  
Vol 4 (41) ◽  
pp. 35-43
Author(s):  
ALEKSEY A. VASIL’EV ◽  
◽  
ALEKSEY N. VASIL’EV ◽  
DMITRIY BUDNIKOV ◽  
ANTON SHARKO

The use of electrophysical influences for pre-sowing treatment of seeds is an effective way to increase their sowing quality. The use of these methods is limited by the fact that their implementation requires new technological equipment in grain processing lines. This problem is solved more easily when pre-sowing processing is performed using installations for active ventilation and grain drying. (Research purpose) The research purpose is in determining the possibility of using active ventilation units and ultra-high-frequency convective grain dryers for pre-sowing grain processing and to evaluating the effectiveness of such processing using computer modeling. (Materials and methods) It is necessary to ensure the uniformity of processing with external influence the seeds placed in a dense layer. Authors carried out pre-sowing treatment of seeds on real installations. Treated seeds were sown in experimental plots and the results of treatment were evaluated. (Results and discussion) The article presents graphs of changes in grain temperature and humidity during processing. To check the feasibility of pre-sowing treatment, authors performed modeling of air-heat and ultra-high-frequency convective seed treatment processes. Based on the results of field experiments, air-heat treatment stimulates the development of secondary plant roots, contributes to an intensive increase in the green mass of plants; ultra-high-frequency convective seed treatment allows increasing the number of productive stems in plants, the number of ears in one plant. (Conclusions) Technological equipment designed for drying and active ventilation of grain can be effectively used for pre-sowing seed processing. In the course of field experiments, it was revealed the possibility of controlling the structure of the crop using different types of external influence on seeds during their pre-sowing processing.


Author(s):  
Roberto Gómez-García ◽  
Li Yang ◽  
José-María Muñoz-Ferreras ◽  
Dimitra Psychogiou

Abstract A class of multi-band planar diplexer with sub-sets of frequency-contiguous transmission bands is reported. Such a radio frequency (RF) device is suitable for lightweight high-frequency receivers aimed at multi-band/multi-purpose mobile satellite communications systems. It consists of two channelizing filters, each of them being made up of the in-series cascade connection of replicas of a constituent multi-passband/multi-embedded-stopband filtering stage. This building filtering stage defines a multi-passband transfer function for each channel, in which each main transmission band is split into various sub-passbands by the multi-stopband part. In this manner, each split passband gives rise to several sub-passbands that are imbricated with their counterpart ones of the other channel. The theoretical RF operational principles of the proposed multi-band diplexer approach with sub-sets of imbricated passbands are detailed by means of a coupling–routing–diagram formalism. Besides, the generation of additional transmission zeros in each channelizing filter for higher-selectivity realizations by exploiting cross-coupling techniques into it is also detailed. Furthermore, for experimental demonstration purposes, a microstrip proof-of-concept prototype of second-order octo-band diplexer in the frequency range of 1.5–2.5 GHz that consists of two quad-band channelizing filters with pairs of imbricated passbands is developed and characterized.


Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. A7-A12 ◽  
Author(s):  
Martin Landrø ◽  
Fredrik Hansteen ◽  
Lasse Amundsen

Recent field experiments have demonstrated that marine air-gun arrays create acoustic energy greater than 1 kHz. We have suggested to use the high-frequency signal as a source to look for gas leakage at, for instance, a producing hydrocarbon field, or a [Formula: see text] storage site in which the field is covered by permanent acoustic sensors at the seabed, often referred to as a permanent reservoir monitoring field. The only needed modification is that the temporal sampling interval for the receivers is decreased to 0.1 ms (in contrast to the normal sampling interval of 1 or 2 ms), to ensure that the system is capable of recording signals up to 5 kHz. We suggest using numerous fixed receivers at the seabed to detect a gas chimney by simple high-pass filtering and subsequent transmission type analysis of the recorded signals. We think this method might serve as an elegant, precise, and very cost-effective way to detect gas leakage into the water layer.


2018 ◽  
Vol 03 (01) ◽  
pp. 1850002 ◽  
Author(s):  
Janis Edelmann ◽  
Andrew J. Petruska ◽  
Bradley J. Nelson

Magnetically controlled catheters and endoscopes can improve minimally invasive procedures as a result of their increased maneuverability when combined with modern magnetic steering systems. However, such systems have two distinct shortcomings: they require continuous information about the location of the instrument inside the human body and they rely on models that accurately capture the device behavior, which are difficult to obtain in realistic settings. To address both of these issues, we propose a control algorithm that continuously estimates a magnetic endoscope’s response to changes in the actuating magnetic field. Experiments in a structured visual environment show that the control method is able to follow image-based trajectories under different initial conditions with an average control error that measures 1.8 % of the trajectory length. The usefulness for medical procedures is demonstrated with a bronchoscopic inspection task. In a proof-of-concept study, a custom 2[Formula: see text]mm diameter miniature camera endoscope is navigated through an anatomically correct lung phantom in a clinician-controlled manner. This represents the first demonstration of the controlled manipulation of a magnetic device without localization, which is critical for a wide range of medical procedures.


Author(s):  
Dimitris M. Chatzigeorgiou ◽  
Atia E. Khalifa ◽  
Kamal Youcef-Toumi ◽  
Rached Ben-Mansour

In most cases the deleterious effects associated with the occurrence of leak may present serious problems and therefore leaks must be quickly detected, located and repaired. The problem of leakage becomes even more serious when it is concerned with the vital supply of fresh water to the community. In addition to waste of resources, contaminants may infiltrate into the water supply. The possibility of environmental health disasters due to delay in detection of water pipeline leaks has spurred research into the development of methods for pipeline leak and contamination detection. Leaks in water pipes create acoustic emissions, which can be sensed to identify and localize leaks. Leak noise correlators and listening devices have been reported in the literature as successful approaches to leak detection but they have practical limitations in terms of cost, sensitivity, reliability and scalability. To overcome those limitations the development of an in-pipe traveling leak detection system is proposed. The development of such a system requires a clear understanding of acoustic signals generated from leaks and the study of the variation of those signals with different pipe loading conditions, leak sizes and surrounding media. This paper discusses those signals and evaluates the merits of an in-pipe-floating sensor.


2019 ◽  
Vol 9 (3) ◽  
pp. 198-207
Author(s):  
V. V. Bezpal'ko ◽  
L. V. Zhukova ◽  
S. V. Stankevich ◽  
Yu. H. Ogurtsov ◽  
I. I. Klymenko ◽  
...  

We analyzed various sources of scientific literature and our data at the experimental field of the National Academy of Agrarian Sciences Plant Growing Institute named after V.Ya. Yuryev within 2010-2013. The irradiation of winter wheat and spring barley seeds with the electromagnetic fields of the extremely high frequencies (MWF of EHF) was carried out with the help of the equipment of the Kharkiv Technical University of Radio Electronics. The treatment of seeds with the microwave oscillations of the extremely high frequency electromagnetic field (MWF of EHF) that is widely used for the operation of many radio and home microwave devices was done at the frequency range of 2.5-3.4 GHz, at the power of 0.9-1.8 kW for 5-95 seconds per 1 kg of seeds. The sowing quality of the seeds before and after treatment was determined in accordance with the current State Standard of Ukraine 4138-2002 in the laboratory of the seed production and seed science of the Plant Growing Institute named after V.Ya. Yuryev. The field experiments were performed in the crop rotation laboratory of the seed production and seed science. Pea for grain was sown before spring barley and the black fallow preceded winter wheat. During the experiments the area of the studied plot was 20 m2, the recurrence was four-times, and the placement of the plots were systemic.We suggested the optimum regimes of seeds irradiation with the microwave field of an extremely high frequency (MWF of EHF). They should be at range of 2.4-3.4 GHz with the power consumption of 0.9 kW per 1 kg of seed and at exposure of 45 seconds of 1.8 kW per 1 kg of seeds and exposure of 15-20 seconds. Such regimes cause the increased energy of germination, seeds sprouting, and crop capacity. We proposed to use this solution for improving and increasing the ecological features of winter wheat and spring barley by using the presowing microwave irradiation of seeds instead of chemical treatment. We considered the complex presowing treatment of seeds with MWF of EHF in combination with the plant growth regulators should be adopted and further enhanced.


Sign in / Sign up

Export Citation Format

Share Document