Twin Meander Coil

Author(s):  
Ryo Takahashi ◽  
Wakako Yukita ◽  
Takuya Sasatani ◽  
Tomoyuki Yokota ◽  
Takao Someya ◽  
...  

Energy-efficient and unconstrained wearable sensing platforms are essential for ubiquitous healthcare and activity monitoring applications. This paper presents Twin Meander Coil for wirelessly connecting battery-free on-body sensors to a textile-based reader knitted into clothing. This connection is based on passive inductive telemetry (PIT), wherein an external reader coil collects data from passive sensor coils via the magnetic field. In contrast to standard active sensing techniques, PIT does not require the reader to power up the sensors. Thus, the reader can be fabricated using a lossy conductive thread and industrial knitting machines. Furthermore, the sensors can superimpose information such as ID, touch, rotation, and pressure on its frequency response. However, conventional PIT technology needs a strong coupling between the reader and the sensor, requiring the reader to be small to the same extent as the sensors' size. Thus, applying this technology to body-scale sensing systems is challenging. To enable body-scale readout, Twin Meander Coil enhances the sensitivity of PIT technology by dividing the body-scale meander-shaped reader coils into two parts and integrating them so that they support the readout of each other. To demonstrate its feasibility, we built a prototype with a knitting machine, evaluated its sensing ability, and demonstrated several applications.

Author(s):  
JUN ZHONG ◽  
HONG ZHOU ◽  
YONGFENG LIU ◽  
XIANKAI CHENG ◽  
LIMING CAI ◽  
...  

The performance of electronic textile (E-textile)-based wearable sensors is largely determined by the wire and electrode contacting stability to the body, which is a multi-discipline challenge for smart garment designs. In this paper, an integrated design of wearable sensors on a smart garment is presented to concurrently measure the multi-channel electrocardiogram, respiration, and temperature signals in different regions of the body. Sensors in separative probe-controller schemes are introduced with full-textile designs of the electrodes and signal transmission wires. An ultra-elastic structure of E-textile wire is proposed with excellent electrical stability, high stretch ratio, and low tension under body dynamics. A complete garment integration solution of the probes, wires, and the sensors is presented. The design is evaluated by comparing the signal quality in static and moderate body movements, which shows clinical level comparable precision and stability. The proposed design may constitute a general solution of distributed noninvasive physiological multi-parameter detection and monitoring applications.


2003 ◽  
Vol 13 (12) ◽  
pp. 3783-3789 ◽  
Author(s):  
F. E. SMITH ◽  
P. LANGLEY ◽  
L. TRAHMS ◽  
U. STEINHOFF ◽  
J. P. BOURKE ◽  
...  

Multichannel magnetocardiography measures the magnetic field distribution of the human heart noninvasively from many sites over the body surface. Multichannel magnetocardiogram (MCG) analysis enables regional temporal differences in the distribution of cardiac magnetic field strength during depolarization and repolarization to be identified, allowing estimation of the global and local inhomogeneity of the cardiac activation process. The aim of this study was to compare the spatial distribution of cardiac magnetic field strength during ventricular depolarization and repolarization in both normal subjects and patients with cardiac abnormalities, obtaining amplitude measurements by magnetocardiography. MCGs were recorded at 49 sites over the heart from three normal subjects and two patients with inverted T-wave conditions. The magnetic field intensity during depolarization and repolarization was measured automatically for each channel and displayed spatially as contour maps. A Pearson correlation was used to determine the spatial relationship between the variables. For normal subjects, magnetic field strength maps during depolarization (R-wave) showed two asymmetric regions of magnetic field strength with a high positive value in the lower half of the chest and a high negative value above this. The regions of high R-wave amplitude corresponded spatially to concentrated asymmetric regions of high magnetic field strength during repolarization (T-wave). Pearson-r correlation coefficients of 0.7 (p<0.01), 0.8 (p<0.01) and 0.9 (p<0.01) were obtained from this analysis for the three normal subjects. A negative correlation coefficient of -0.7 (p<0.01) was obtained for one of the subjects with inverted T-wave abnormalities, suggesting similar but inverted magnetic field and current distributions to normal subjects. Even with the high correlation values in these four subjects, the MCG was able to identify differences in the distribution of magnetic field strength, with a shift in the T-wave relative to the R-wave. The measurement of cardiac magnetic field distribution during depolarization and repolarization of normal subjects and patients with clinical abnormalities should enable the improvement of theoretical models for the explanation of the cardiac depolarization and repolarization processes.


ACTA IMEKO ◽  
2015 ◽  
Vol 4 (2) ◽  
pp. 85 ◽  
Author(s):  
Matthias Bartholmai ◽  
Markus Stoppel ◽  
Sergej Petrov ◽  
Stefan Hohendorf ◽  
Thomas Goedecke

The combination of RFID-tags and energy efficient sensors offers promising potential for identification, diagnosis, and monitoring applications - particularly when it comes to objects, which require continuous observation and which are difficult to access with conventional tools. This paper presents two examples as an outlook for RFID sensor systems in embedded structures and in mobile applications.


2021 ◽  
Vol 03 (04) ◽  
pp. 70-78
Author(s):  
Tulakov Elmurad Salomovich ◽  
◽  
Matyokubov Bobur Pulatovich ◽  

If the surface temperature of any building material drops sharply without changing the humidity and the surface temperature is lower than the dew point temperature, dew-like water droplets are formed on the surface of this material. This condition is called condensing humidity condition. Condensation moisture formed on the surfaces of building materials and external barriers is slowly absorbed into the body of building materials over time, increasing the relative humidity of this structure. Condensation moisture can be observed when the temperature of the surfaces of external barrier structures drops sharply. This condition can be observed everywhere where the basement is connected to the outer walls of the basement. The article deals with the issue of thermal insulation and calculation of basement walls of modern energy-efficient buildings, which are widely used in the country and abroad.


2021 ◽  
Vol 6 (52) ◽  
pp. eabd2813
Author(s):  
Ben Wang ◽  
Kai Fung Chan ◽  
Ke Yuan ◽  
Qianqian Wang ◽  
Xianfeng Xia ◽  
...  

High-precision delivery of microrobots at the whole-body scale is of considerable importance for efforts toward targeted therapeutic intervention. However, vision-based control of microrobots, to deep and narrow spaces inside the body, remains a challenge. Here, we report a soft and resilient magnetic cell microrobot with high biocompatibility that can interface with the human body and adapt to the complex surroundings while navigating inside the body. We achieve time-efficient delivery of soft microrobots using an integrated platform called endoscopy-assisted magnetic actuation with dual imaging system (EMADIS). EMADIS enables rapid deployment across multiple organ/tissue barriers at the whole-body scale and high-precision delivery of soft and biohybrid microrobots in real time to tiny regions with depth up to meter scale through natural orifice, which are commonly inaccessible and even invisible by conventional endoscope and medical robots. The precise delivery of magnetic stem cell spheroid microrobots (MSCSMs) by the EMADIS transesophageal into the bile duct with a total distance of about 100 centimeters can be completed within 8 minutes. The integration strategy offers a full clinical imaging technique–based therapeutic/intervention system, which broadens the accessibility of hitherto hard-to-access regions, by means of soft microrobots.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 432 ◽  
Author(s):  
Chuan-Yu Chang ◽  
Kathiravan Srinivasan ◽  
Mao-Cheng Chen ◽  
Shao-Jer Chen

In recent years, there are several cost-effective intelligent sensing systems such as ultrasound imaging systems for visualizing the internal body structures of the body. Further, such intelligent sensing systems such as ultrasound systems have been deployed by medical doctors around the globe for efficient detection of several diseases and disorders in the human body. Even though the ultrasound sensing system is a useful tool for obtaining the imagery of various body parts, there is always a possibility of inconsistencies in these images due to the variation in the settings of the system parameters. Therefore, in order to overcome such issues, this research devises an SVM-enabled intelligent genetic algorithmic model for choosing the universal features with four distinct settings of the parameters. Subsequently, the distinguishing characteristics of these features are assessed utilizing the Sorensen-Dice coefficient, t-test, and Pearson’s R measure. It is apparent from the results of the SVM-enabled intelligent genetic algorithmic model that this approach aids in the effectual selection of universal features for the breast cyst images. In addition, this approach also accomplishes superior accuracy in the classification of the ultrasound image for four distinct settings of the parameters.


2008 ◽  
Vol 26 (10) ◽  
pp. 3153-3158 ◽  
Author(s):  
E. Romashets ◽  
M. Vandas ◽  
S. Poedts

Abstract. It is well-known that interplanetary magnetic clouds can cause strong geomagnetic storms due to the high magnetic field magnitude in their interior, especially if there is a large negative Bz component present. In addition, the magnetic disturbances around such objects can play an important role in their "geo-effectiveness". On the other hand, the magnetic and flow fields in the CME sheath region in front of the body and in the rear of the cloud are important for understanding both the dynamics and the evolution of the interplanetary cloud. The "eventual" aim of this work is to calculate the magnetic field in this CME sheath region in order to evaluate the possible geo-efficiency of the cloud in terms of the maximum |Bz|-component in this region. In this paper we assess the potential of this approach by introducing a model with a simplified geometry. We describe the magnetic field between the CME shock surface and the cloud's boundary by means of a vector potential. We also apply our model and present the magnetic field distribution in the CME sheath region in front of the body and in the rear of the cloud formed after the event of 20 November 2003.


Sign in / Sign up

Export Citation Format

Share Document