scholarly journals Return of CFA: call-site sensitivity can be superior to object sensitivity even for object-oriented programs

2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-29
Author(s):  
Minseok Jeon ◽  
Hakjoo Oh

In this paper, we challenge the commonly-accepted wisdom in static analysis that object sensitivity is superior to call-site sensitivity for object-oriented programs. In static analysis of object-oriented programs, object sensitivity has been established as the dominant flavor of context sensitivity thanks to its outstanding precision. On the other hand, call-site sensitivity has been regarded as unsuitable and its use in practice has been constantly discouraged for object-oriented programs. In this paper, however, we claim that call-site sensitivity is generally a superior context abstraction because it is practically possible to transform object sensitivity into more precise call-site sensitivity. Our key insight is that the previously known superiority of object sensitivity holds only in the traditional k -limited setting, where the analysis is enforced to keep the most recent k context elements. However, it no longer holds in a recently-proposed, more general setting with context tunneling. With context tunneling, where the analysis is free to choose an arbitrary k -length subsequence of context strings, we show that call-site sensitivity can simulate object sensitivity almost completely, but not vice versa. To support the claim, we present a technique, called Obj2CFA, for transforming arbitrary context-tunneled object sensitivity into more precise, context-tunneled call-site-sensitivity. We implemented Obj2CFA in Doop and used it to derive a new call-site-sensitive analysis from a state-of-the-art object-sensitive pointer analysis. Experimental results confirm that the resulting call-site sensitivity outperforms object sensitivity in precision and scalability for real-world Java programs. Remarkably, our results show that even 1-call-site sensitivity can be more precise than the conventional 3-object-sensitive analysis.

Author(s):  
Masoud Hamedani ◽  
Sang-Wook Kim

In this paper, we propose SimAndro-Plus as an improved variant of the state-of-the-art method, SimAndro, to compute the similarity of Android applications (apps) regarding their functionalities. SimAndro-Plus has two major differences with SimAndro: 1) it exploits two beneficial features to similarity computation, which are totally disregarded by SimAndro; 2) to compute the similarity score of an app-pair based on strings and package name features, SimAndro-Plus considers not only those terms co-appearing in both apps but also considers those terms appearing in one app while missing in the other one. The results of our extensive ex periments with three real-world datasets and a dataset constructed by human experts demonstrate that 1) each of the two aforementioned differences is really effective to achieve better accuracy and 2) SimAndro-Plus outperforms SimAndro in similarity computation by 14% in average.


Author(s):  
Zhi Lu ◽  
Yang Hu ◽  
Bing Zeng

Factorization models have been extensively used for recovering the missing entries of a matrix or tensor. However, directly computing all of the entries using the learned factorization models is prohibitive when the size of the matrix/tensor is large. On the other hand, in many applications, such as collaborative filtering, we are only interested in a few entries that are the largest among them. In this work, we propose a sampling-based approach for finding the top entries of a tensor which is decomposed by the CANDECOMP/PARAFAC model. We develop an algorithm to sample the entries with probabilities proportional to their values. We further extend it to make the sampling proportional to the $k$-th power of the values, amplifying the focus on the top ones. We provide theoretical analysis of the sampling algorithm and evaluate its performance on several real-world data sets. Experimental results indicate that the proposed approach is orders of magnitude faster than exhaustive computing. When applied to the special case of searching in a matrix, it also requires fewer samples than the other state-of-the-art method.


2015 ◽  
Vol 24 (03) ◽  
pp. 1550003 ◽  
Author(s):  
Armin Daneshpazhouh ◽  
Ashkan Sami

The task of semi-supervised outlier detection is to find the instances that are exceptional from other data, using some labeled examples. In many applications such as fraud detection and intrusion detection, this issue becomes more important. Most existing techniques are unsupervised. On the other hand, semi-supervised approaches use both negative and positive instances to detect outliers. However, in many real world applications, very few positive labeled examples are available. This paper proposes an innovative approach to address this problem. The proposed method works as follows. First, some reliable negative instances are extracted by a kNN-based algorithm. Afterwards, fuzzy clustering using both negative and positive examples is utilized to detect outliers. Experimental results on real data sets demonstrate that the proposed approach outperforms the previous unsupervised state-of-the-art methods in detecting outliers.


1995 ◽  
Vol 10 (4) ◽  
pp. 345-360 ◽  
Author(s):  
Frank van Harmelen ◽  
Dieter Fensel

AbstractThis paper presents a general discussion of the role of formal methods in knowledge engineering. We give an historical account of the development of the field of knowledge engineering towards the use of formal methods. Subsequently, we discuss the pros and cons of formal methods. We do this by summarising the proclaimed advantages, and by arguing against some of the commonly heard objections against formal methods. We briefly summarise the current state of the art and discuss the most important directions that future research in this field should take. This paper presents a general setting for the other contributions in this issue of the journal, which each deal with a specific issue in more detail.


1999 ◽  
Vol 18 (3-4) ◽  
pp. 265-273
Author(s):  
Giovanni B. Garibotto

The paper is intended to provide an overview of advanced robotic technologies within the context of Postal Automation services. The main functional requirements of the application are briefly referred, as well as the state of the art and new emerging solutions. Image Processing and Pattern Recognition have always played a fundamental role in Address Interpretation and Mail sorting and the new challenging objective is now off-line handwritten cursive recognition, in order to be able to handle all kind of addresses in a uniform way. On the other hand, advanced electromechanical and robotic solutions are extremely important to solve the problems of mail storage, transportation and distribution, as well as for material handling and logistics. Finally a short description of new services of Postal Automation is referred, by considering new emerging services of hybrid mail and paper to electronic conversion.


2021 ◽  
pp. 1-27 ◽  
Author(s):  
Brandon de la Cuesta ◽  
Naoki Egami ◽  
Kosuke Imai

Abstract Conjoint analysis has become popular among social scientists for measuring multidimensional preferences. When analyzing such experiments, researchers often focus on the average marginal component effect (AMCE), which represents the causal effect of a single profile attribute while averaging over the remaining attributes. What has been overlooked, however, is the fact that the AMCE critically relies upon the distribution of the other attributes used for the averaging. Although most experiments employ the uniform distribution, which equally weights each profile, both the actual distribution of profiles in the real world and the distribution of theoretical interest are often far from uniform. This mismatch can severely compromise the external validity of conjoint analysis. We empirically demonstrate that estimates of the AMCE can be substantially different when averaging over the target profile distribution instead of uniform. We propose new experimental designs and estimation methods that incorporate substantive knowledge about the profile distribution. We illustrate our methodology through two empirical applications, one using a real-world distribution and the other based on a counterfactual distribution motivated by a theoretical consideration. The proposed methodology is implemented through an open-source software package.


Author(s):  
Alexander Diederich ◽  
Christophe Bastien ◽  
Karthikeyan Ekambaram ◽  
Alexis Wilson

The introduction of automated L5 driving technologies will revolutionise the design of vehicle interiors and seating configurations, improving occupant comfort and experience. It is foreseen that pre-crash emergency braking and swerving manoeuvres will affect occupant posture, which could lead to an interaction with a deploying airbag. This research addresses the urgent safety need of defining the occupant’s kinematics envelope during that pre-crash phase, considering rotated seat arrangements and different seatbelt configurations. The research used two different sets of volunteer tests experiencing L5 vehicle manoeuvres, based in the first instance on 22 50th percentile fit males wearing a lap-belt (OM4IS), while the other dataset is based on 87 volunteers with a BMI range of 19 to 67 kg/m2 wearing a 3-point belt (UMTRI). Unique biomechanics kinematics corridors were then defined, as a function of belt configuration and vehicle manoeuvre, to calibrate an Active Human Model (AHM) using a multi-objective optimisation coupled with a Correlation and Analysis (CORA) rating. The research improved the AHM omnidirectional kinematics response over current state of the art in a generic lap-belted environment. The AHM was then tested in a rotated seating arrangement under extreme braking, highlighting that maximum lateral and frontal motions are comparable, independent of the belt system, while the asymmetry of the 3-point belt increased the occupant’s motion towards the seatbelt buckle. It was observed that the frontal occupant kinematics decrease by 200 mm compared to a lap-belted configuration. This improved omnidirectional AHM is the first step towards designing safer future L5 vehicle interiors.


2021 ◽  
Vol 18 (4) ◽  
pp. 1-22
Author(s):  
Jerzy Proficz

Two novel algorithms for the all-gather operation resilient to imbalanced process arrival patterns (PATs) are presented. The first one, Background Disseminated Ring (BDR), is based on the regular parallel ring algorithm often supplied in MPI implementations and exploits an auxiliary background thread for early data exchange from faster processes to accelerate the performed all-gather operation. The other algorithm, Background Sorted Linear synchronized tree with Broadcast (BSLB), is built upon the already existing PAP-aware gather algorithm, that is, Background Sorted Linear Synchronized tree (BSLS), followed by a regular broadcast distributing gathered data to all participating processes. The background of the imbalanced PAP subject is described, along with the PAP monitoring and evaluation topics. An experimental evaluation of the algorithms based on a proposed mini-benchmark is presented. The mini-benchmark was performed over 2,000 times in a typical HPC cluster architecture with homogeneous compute nodes. The obtained results are analyzed according to different PATs, data sizes, and process numbers, showing that the proposed optimization works well for various configurations, is scalable, and can significantly reduce the all-gather elapsed times, in our case, up to factor 1.9 or 47% in comparison with the best state-of-the-art solution.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 349
Author(s):  
Devika Sudsom ◽  
Andrea Ehrmann

Combining clusters of magnetic materials with a matrix of other magnetic materials is very interesting for basic research because new, possibly technologically applicable magnetic properties or magnetization reversal processes may be found. Here we report on different arrays combining iron and nickel, for example, by surrounding circular nanodots of one material with a matrix of the other or by combining iron and nickel nanodots in air. Micromagnetic simulations were performed using the OOMMF (Object Oriented MicroMagnetic Framework). Our results show that magnetization reversal processes are strongly influenced by neighboring nanodots and the magnetic matrix by which the nanodots are surrounded, respectively, which becomes macroscopically visible by several steps along the slopes of the hysteresis loops. Such material combinations allow for preparing quaternary memory systems, and are thus highly relevant for applications in data storage and processing.


Sign in / Sign up

Export Citation Format

Share Document