scholarly journals The Molecular Basis of G Protein–Coupled Receptor Activation

2018 ◽  
Vol 87 (1) ◽  
pp. 897-919 ◽  
Author(s):  
William I. Weis ◽  
Brian K. Kobilka

G protein–coupled receptors (GPCRs) mediate the majority of cellular responses to external stimuli. Upon activation by a ligand, the receptor binds to a partner heterotrimeric G protein and promotes exchange of GTP for GDP, leading to dissociation of the G protein into α and βγ subunits that mediate downstream signals. GPCRs can also activate distinct signaling pathways through arrestins. Active states of GPCRs form by small rearrangements of the ligand-binding, or orthosteric, site that are amplified into larger conformational changes. Molecular understanding of the allosteric coupling between ligand binding and G protein or arrestin interaction is emerging from structures of several GPCRs crystallized in inactive and active states, spectroscopic data, and computer simulations. The coupling is loose, rather than concerted, and agonist binding does not fully stabilize the receptor in an active conformation. Distinct intermediates whose populations are shifted by ligands of different efficacies underlie the complex pharmacology of GPCRs.

2021 ◽  
Author(s):  
Franziska Marie Heydenreich ◽  
Maria Marti-Solano ◽  
Manbir Sandhu ◽  
Brian K Kobilka ◽  
Michel Bouvier ◽  
...  

G protein-coupled receptors (GPCRs) translate binding of extracellular ligands into intracellular responses through conformational changes. Ligand properties are described by the maximum response (efficacy) and the agonist concentration at half-maximal response (potency). Integrating structural changes with pharmacological properties remains challenging and has not yet been performed at the resolution of individual amino acids. We use epinephrine and β2-adrenergic receptor as a model to integrate residue-level pharmacology data with intramolecular residue contact data describing receptor activation. This unveils the allosteric networks driving ligand efficacy and potency. We provide detailed insights into how structural rearrangements are linked to fundamental pharmacological properties at single-residue level in a receptor-ligand system. Our approach can be used to determine such pharmacological networks for any receptor-ligand complex.


2004 ◽  
Vol 24 (5) ◽  
pp. 2041-2051 ◽  
Author(s):  
Jennifer C. Lin ◽  
Ken Duell ◽  
James B. Konopka

ABSTRACT The α-factor receptor (Ste2p) that promotes mating in Saccharomyces cerevisiae is similar to other G protein-coupled receptors (GPCRs) in that it contains seven transmembrane domains. Previous studies suggested that the extracellular ends of the transmembrane domains are important for Ste2p function, so a systematic scanning mutagenesis was carried out in which 46 residues near the ends of transmembrane domains 1, 2, 3, 4, and 7 were replaced with cysteine. These mutants complement mutations constructed previously near the ends of transmembrane domains 5 and 6 to analyze all the extracellular ends. Eight new mutants created in this study were partially defective in signaling (V45C, N46C, T50C, A52C, L102C, N105C, L277C, and A281C). Treatment with 2-([biotinoyl] amino) ethyl methanethiosulfonate, a thiol-specific reagent that reacts with accessible cysteine residues but not membrane-embedded cysteines, identified a drop in the level of reactivity over a consecutive series of residues that was inferred to be the membrane boundary. An unusual prolonged zone of intermediate reactivity near the extracellular end of transmembrane domain 2 suggests that this region may adopt a special structure. Interestingly, residues implicated in ligand binding were mainly accessible, whereas residues involved in the subsequent step of promoting receptor activation were mainly inaccessible. These results define a receptor microdomain that provides an important framework for interpreting the mechanisms by which functionally important residues contribute to ligand binding and activation of Ste2p and other GPCRs.


2017 ◽  
Vol 41 (1) ◽  
Author(s):  
Amy Sojka ◽  
Kevin Brennan ◽  
Evelyn Maizels ◽  
Christine Young

G Protein-Coupled Receptors (GPCRs) are transmembrane (TM) proteins that span the cell membrane seven times, and contain intracellular and extracellular domains, comprised of connecting loops, as well as terminal extension sequences. GPCRs bind ligands within their transmembrane and/or extracellular domains. Ligand binding elicits conformational changes that initiate downstream intracellular signaling events through arrestins and G proteins. GPCRs play central roles in many physiological processes, from sensory to neurological, cardiovascular, endocrine, and reproductive functions. This paper strives to provide an entry point to current GPCR science, and to identify visual approaches to communicate select aspects of GPCR structure and function with clarity and accuracy. The overall GPCR structure, primary sequence and the implications of sequence for membrane topology, ligand binding and helical rearrangements accompanying activation are considered and discussed in the context of visualization strategies, including two-dimensional topological diagrams, three-dimensional representations, and common errors that arise from these representation.


Author(s):  
Matthew Rosa ◽  
Timothy Noel ◽  
Matthew Harris ◽  
Graham Ladds

Adhesion G protein-coupled receptors (aGPCRs) form a sub-group within the GPCR superfamily. Their distinctive structure contains an abnormally large N-terminal, extracellular region with a GPCR autoproteolysis-inducing (GAIN) domain. In most aGPCRs, the GAIN domain constitutively cleaves the receptor into two fragments. This process is often required for aGPCR signalling. Over the last two decades, much research has focussed on aGPCR-ligand interactions, in an attempt to deorphanize the family. Most ligands have been found to bind to regions N-terminal to the GAIN domain. These receptors may bind a variety of ligands, ranging across membrane-bound proteins and extracellular matrix components. Recent advancements have revealed a conserved method of aGPCR activation involving a tethered ligand within the GAIN domain. Evidence for this comes from increased activity in receptor mutants exposing the tethered ligand. As a result, G protein-coupling partners of aGPCRs have been more extensively characterised, making use of their tethered ligand to create constitutively active mutants. This has led to demonstrations of aGPCR function in, for example, neurodevelopment and tumour growth. However, questions remain around the ligands that may bind many aGPCRs, how this binding is translated into changes in the GAIN domain, and the exact mechanism of aGPCR activation following GAIN domain conformational changes. This review aims to examine the current knowledge around aGPCR activation, including ligand binding sites, the mechanism of GAIN domain-mediated receptor activation and how aGPCR transmembrane domains may relate to activation. Other aspects of aGPCR signalling will be touched upon, such as downstream effectors and physiological roles.


2007 ◽  
Vol 35 (4) ◽  
pp. 717-720 ◽  
Author(s):  
M. Wheatley ◽  
J. Simms ◽  
S.R. Hawtin ◽  
V.J. Wesley ◽  
D. Wootten ◽  
...  

GPCRs (G-protein-coupled receptors) are a large family of structurally related proteins which mediate their effects by coupling to G-proteins. The V1aR (V1a vasopressin receptor) is a member of a family of related GPCRs that are activated by vasopressin {AVP ([Arg8]vasopressin)}, OT (oxytocin) and related peptides. These receptors are members of a subfamily of Family A GPCRs called the neurohypophysial peptide hormone receptor family. GPCRs exhibit a conserved tertiary structure comprising a bundle of seven TM (transmembrane) helices linked by alternating ECLs (extracellular loops) and ICLs (intracellular loops). The cluster of TM helices is functionally important for ligand binding, and, furthermore, activation of GPCRs involves movement of these TM helices. Consequently, it might be assumed that the extracellular face of GPCRs is composed of peptide linkers that merely connect important TM helices. However, using a systematic mutagenesis approach and focusing on the N-terminus and the second ECL of the V1aR, we have established that these extracellular domains fulfil a range of important roles with respect to GPCR signalling, including agonist binding, ligand selectivity and receptor activation.


2001 ◽  
Vol 357 (2) ◽  
pp. 587-592 ◽  
Author(s):  
Nickolai O. DULIN ◽  
Sergei N. ORLOV ◽  
Chad M. KITCHEN ◽  
Tatyana A. VOYNO-YASENETSKAYA ◽  
Joseph M. MIANO

A hallmark of cultured smooth muscle cells (SMCs) is the rapid down-regulation of several lineage-restricted genes that define their in vivo differentiated phenotype. Identifying factors that maintain an SMC differentiated phenotype has important implications in understanding the molecular underpinnings governing SMC differentiation and their subversion to an altered phenotype in various disease settings. Here, we show that several G-protein coupled receptors [α-thrombin, lysophosphatidic acid and angiotensin II (AII)] increase the expression of smooth muscle calponin (SM-Calp) in rat and human SMC. The increase in SM-Calp protein appears to be selective for G-protein-coupled receptors as epidermal growth factor was without effect. Studies using AII showed a 30-fold increase in SM-Calp protein, which was dose- and time-dependent and mediated by the angiotensin receptor-1 (AT1 receptor). The increase in SM-Calp protein with AII was attributable to transcriptional activation of SM-Calp based on increases in steady-state SM-Calp mRNA, increases in SM-Calp promoter activity and complete abrogation of protein induction with actinomycin D. To examine the potential role of extracellular signal-regulated kinase (Erk1/2), protein kinase B, p38 mitogen-activated protein kinase and protein kinase C in AII-induced SM-Calp, inhibitors to each of the signalling pathways were used. None of these signalling molecules appears to be crucial for AII-induced SM-Calp expression, although Erk1/2 may be partially involved. These results identify SM-Calp as a target of AII-mediated signalling, and suggest that the SMC response to AII may incorporate a novel activity of SM-Calp.


2018 ◽  
Author(s):  
Zack Zurawski ◽  
Analisa D. Thompson Gray ◽  
Lillian J. Brady ◽  
Brian Page ◽  
Emily Church ◽  
...  

ABSTRACTGi/o-coupled G-protein coupled receptors modulate neurotransmission presynaptically through inhibition of exocytosis. Release of Gβγ subunits decreases the activity of voltage-gated calcium channels (VGCC), decreasing excitability. A less understood Gβγ–mediated mechanism downstream of calcium entry is the binding of Gβγ to SNARE complexes. Here, we create a mouse partially deficient in this interaction. SNAP25Δ3 homozygote animals are developmentally normalbut impaired gait and supraspinal nociception. They also have elevated stress-induced hyperthermia and impaired inhibitory postsynaptic responses to α2A-AR, but normal inhibitory postsynaptic responses to Gi/o-coupled GABAB receptor activation. SNAP25Δ3 homozygotes have deficits in inhibition of hippocampal postsynaptic responses to 5 HT1b agonists that affect hippocampal learning. These data suggest that Gi/o-coupled GPCR inhibition of exocytosis through the Gβγ-SNARE interaction is a crucial component of numerous physiological and behavioral processes.


FEBS Letters ◽  
2019 ◽  
Vol 593 (10) ◽  
pp. 1113-1121 ◽  
Author(s):  
Wanhui Hu ◽  
Huixia Wang ◽  
Yaguang Hou ◽  
Yimei Hao ◽  
Dongsheng Liu

2018 ◽  
Vol 115 (37) ◽  
pp. 9252-9257 ◽  
Author(s):  
Jamie L. Lahvic ◽  
Michelle Ammerman ◽  
Pulin Li ◽  
Megan C. Blair ◽  
Emma R. Stillman ◽  
...  

Epoxyeicosatrienoic acids (EETs) are lipid-derived signaling molecules with cardioprotective and vasodilatory actions. We recently showed that 11,12-EET enhances hematopoietic induction and engraftment in mice and zebrafish. EETs are known to signal via G protein-coupled receptors, with evidence supporting the existence of a specific high-affinity receptor. Identification of a hematopoietic-specific EET receptor would enable genetic interrogation of EET signaling pathways, and perhaps clinical use of this molecule. We developed a bioinformatic approach to identify an EET receptor based on the expression of G protein-coupled receptors in cell lines with differential responses to EETs. We found 10 candidate EET receptors that are expressed in three EET-responsive cell lines, but not expressed in an EET-unresponsive line. Of these, only recombinant GPR132 showed EET-responsiveness in vitro, using a luminescence-based β-arrestin recruitment assay. Knockdown of zebrafish gpr132b prevented EET-induced hematopoiesis, and marrow from GPR132 knockout mice showed decreased long-term engraftment capability. In contrast to high-affinity EET receptors, GPR132 is reported to respond to additional hydroxy-fatty acids in vitro, and we found that these same hydroxy-fatty acids enhance hematopoiesis in the zebrafish. We conducted structure–activity relationship analyses using both cell culture and zebrafish assays on diverse medium-chain fatty acids. Certain oxygenated, unsaturated free fatty acids showed high activation of GPR132, whereas unoxygenated or saturated fatty acids had lower activity. Absence of the carbon-1 position carboxylic acid prevented activity, suggesting that this moiety is required for receptor activation. GPR132 responds to a select panel of oxygenated polyunsaturated fatty acids to enhance both embryonic and adult hematopoiesis.


Sign in / Sign up

Export Citation Format

Share Document