tethered ligand
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 21)

H-INDEX

29
(FIVE YEARS 3)

Author(s):  
Michelle L. Stoller ◽  
Indranil Basak ◽  
Frederik Denorme ◽  
Jesse W Rowley ◽  
James Alsobrooks ◽  
...  

Platelet-neutrophil interactions regulate ischemic vascular injury. Platelets are activated by serine proteases that cleave protease activated receptor (PAR) amino-termini, resulting in an activating tethered ligand. Neutrophils release cathepsin G (CatG) at sites of injury and inflammation, which activates PAR4 but not PAR1, although the molecular mechanism of CatG-induced PAR4 activation is unknown. We show that blockade of the canonical PAR4 thrombin cleavage site did not alter CatG-induced platelet aggregation, suggesting CatG cleaves a different site than thrombin. Mass spectrometry analysis using PAR4 N-terminus peptides revealed CatG cleavage at Ser67-Arg68. A synthetic peptide, RALLLGWVPTR, representing the tethered ligand resulting from CatG proteolyzed PAR4, induced PAR4-dependent calcium flux and greater platelet aggregation than the thrombin-generated GYPGQV peptide. Mutating PAR4 Ser67 or Arg68 reduced CatG-induced calcium flux without affecting thrombin-induced calcium flux. Dog platelets, which contain a conserved CatG PAR4 Ser-Arg cleavage site, aggregated in response to human CatG and RALLLGWVPTR, while mouse (Ser-Gln) and rat (Ser-Glu) platelets, were unresponsive. Thus, CatG amputates the PAR4 thrombin cleavage site by cleavage at Ser67-Arg68 and activates PAR4 by generating a new functional tethered ligand. These findings support PAR4 as an important CatG signaling receptor and suggest a novel therapeutic approach for blocking platelet-neutrophil-mediated pathophysiologies.


2021 ◽  
Vol 22 (19) ◽  
pp. 10711
Author(s):  
Michelle De De bruyn ◽  
Hannah Ceuleers ◽  
Nikita Hanning ◽  
Maya Berg ◽  
Joris G. De De Man ◽  
...  

The protease activity in inflammatory bowel disease (IBD) and irritable bowel syndrome has been studied extensively using synthetic fluorogenic substrates targeting specific sets of proteases. We explored activities in colonic tissue from a 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rat model by investigating the cleavage of bioactive peptides. Pure trypsin- and elastase-like proteases on the one hand and colonic tissue from rats with TNBS-induced colitis in the acute or post-inflammatory phase on the other, were incubated with relevant peptides to identify their cleavage pattern by mass spectrometry. An increased cleavage of several peptides was observed in the colon from acute colitis rats. The tethered ligand (TL) sequences of peptides mimicking the N-terminus of protease-activated receptors (PAR) 1 and 4 were significantly unmasked by acute colitis samples and these cleavages were positively correlated with thrombin activity. Increased cleavage of β-endorphin and disarming of the TL-sequence of the PAR3-based peptide were observed in acute colitis and linked to chymotrypsin-like activity. Increased processing of the enkephalins points to the involvement of proteases with specificities different from trypsin- or chymotrypsin-like enzymes. In conclusion, our results suggest thrombin, chymotrypsin-like proteases and a set of proteases with different specificities as potential therapeutic targets in IBD.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Nigel Bunnett ◽  
Kathryn DeFea ◽  
Justin Hamilton ◽  
Morley D. Hollenberg ◽  
Rithwik Ramachandran ◽  
...  

Proteinase-activated receptors (PARs, nomenclature as agreed by the NC-IUPHAR Subcommittee on Proteinase-activated Receptors [39]) are unique members of the GPCR superfamily activated by proteolytic cleavage of their amino terminal exodomains. Agonist proteinase-induced hydrolysis unmasks a tethered ligand (TL) at the exposed amino terminus, which acts intramolecularly at the binding site in the body of the receptor to effect transmembrane signalling. TL sequences at human PAR1-4 are SFLLRN-NH2, SLIGKV-NH2, TFRGAP-NH2 and GYPGQV-NH2, respectively. With the exception of PAR3, synthetic peptides with these sequences (as carboxyl terminal amides) are able to act as agonists at their respective receptors. Several proteinases, including neutrophil elastase, cathepsin G and chymotrypsin can have inhibitory effects at PAR1 and PAR2 such that they cleave the exodomain of the receptor without inducing activation of Gαq-coupled calcium signalling, thereby preventing activation by activating proteinases but not by agonist peptides. Neutrophil elastase (NE) cleavage of PAR1 and PAR2 can however activate MAP kinase signaling by exposing a TL that is different from the one revealed by trypsin [82]. PAR2 activation by NE regulates inflammation and pain responses [111, 72] and triggers mucin secretion from airway epithelial cells [112].


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Ross Bathgate ◽  
Thomas Dschietzig ◽  
Andrew L. Gundlach ◽  
Michelle Halls ◽  
Roger Summers

Relaxin family peptide receptors (RXFP, nomenclature as agreed by the NC-IUPHAR Subcommittee on Relaxin family peptide receptors [18, 81]) may be divided into two pairs, RXFP1/2 and RXFP3/4. Endogenous agonists at these receptors are heterodimeric peptide hormones structurally related to insulin: relaxin-1, relaxin, relaxin-3 (also known as INSL7), insulin-like peptide 3 (INSL3) and INSL5. Species homologues of relaxin have distinct pharmacology and relaxin interacts with RXFP1, RXFP2 and RXFP3, whereas mouse and rat relaxin selectively bind to and activate RXFP1 [184]. relaxin-3 is the ligand for RXFP3 but it also binds to RXFP1 and RXFP4 and has differential affinity for RXFP2 between species [183]. INSL5 is the ligand for RXFP4 but is a weak antagonist of RXFP3. relaxin and INSL3 have multiple complex binding interactions with RXFP1 [189] and RXFP2 [91] which direct the N-terminal LDLa modules of the receptors together with a linker domain to act as a tethered ligand to direct receptor signaling [186]. INSL5 and relaxin-3 interact with their receptors using distinct residues in their B-chains for binding, and activation, respectively [225, 104].


2021 ◽  
Vol 22 (17) ◽  
pp. 9352
Author(s):  
Flora Lucena ◽  
Jason J. McDougall

The catabolic and destructive activity of serine proteases in arthritic joints is well known; however, these enzymes can also signal pain and inflammation in joints. For example, thrombin, trypsin, tryptase, and neutrophil elastase cleave the extracellular N-terminus of a family of G protein-coupled receptors and the remaining tethered ligand sequence then binds to the same receptor to initiate a series of molecular signalling processes. These protease activated receptors (PARs) pervade multiple tissues and cells throughout joints where they have the potential to regulate joint homeostasis. Overall, joint PARs contribute to pain, inflammation, and structural integrity by altering vascular reactivity, nociceptor sensitivity, and tissue remodelling. This review highlights the therapeutic potential of targeting PARs to alleviate the pain and destructive nature of elevated proteases in various arthritic conditions.


2021 ◽  
Author(s):  
Magnus S. Bauer ◽  
Sophia Gruber ◽  
Adina Hausch ◽  
Lukas F. Milles ◽  
Thomas Nicolaus ◽  
...  

SARS-CoV-2 infections are initiated by attachment of the receptor-binding domain (RBD) on the viral Spike protein to angiotensin-converting enzyme-2 (ACE2) on human host cells. This critical first step occurs in dynamic environments, where external forces act on the binding partners and multivalent interactions play critical roles, creating an urgent need for assays that can quantitate SARS-CoV-2 interactions with ACE2 under mechanical load and in defined geometries. Here, we introduce a tethered ligand assay that comprises the RBD and the ACE2 ectodomain joined by a flexible peptide linker. Using magnetic tweezers and atomic force spectroscopy as highly complementary single-molecule force spectroscopy techniques, we investigate the RBD:ACE2 interaction over the whole physiologically relevant force range. We combine the experimental results with steered molecular dynamics simulations and observe and assign fully consistent unbinding and unfolding events across the three techniques, enabling us to establish ACE2 unfolding as a molecular fingerprint. Measuring at forces of 2-5 pN, we quantify the force dependence and kinetics of the RBD:ACE2 bond in equilibrium. We show that the SARS-CoV-2 RBD:ACE2 interaction has higher mechanical stability, larger binding free energy, and a lower dissociation rate in comparison to SARS-CoV-1, which helps to rationalize the different infection patterns of the two viruses. By studying how free ACE2 outcompetes tethered ACE2, we show that our assay is sensitive to prevention of bond formation by external binders. We expect our results to provide a novel way to investigate the roles of mutations and blocking agents for targeted pharmaceutical intervention.


Author(s):  
Matthew Rosa ◽  
Timothy Noel ◽  
Matthew Harris ◽  
Graham Ladds

Adhesion G protein-coupled receptors (aGPCRs) form a sub-group within the GPCR superfamily. Their distinctive structure contains an abnormally large N-terminal, extracellular region with a GPCR autoproteolysis-inducing (GAIN) domain. In most aGPCRs, the GAIN domain constitutively cleaves the receptor into two fragments. This process is often required for aGPCR signalling. Over the last two decades, much research has focussed on aGPCR-ligand interactions, in an attempt to deorphanize the family. Most ligands have been found to bind to regions N-terminal to the GAIN domain. These receptors may bind a variety of ligands, ranging across membrane-bound proteins and extracellular matrix components. Recent advancements have revealed a conserved method of aGPCR activation involving a tethered ligand within the GAIN domain. Evidence for this comes from increased activity in receptor mutants exposing the tethered ligand. As a result, G protein-coupling partners of aGPCRs have been more extensively characterised, making use of their tethered ligand to create constitutively active mutants. This has led to demonstrations of aGPCR function in, for example, neurodevelopment and tumour growth. However, questions remain around the ligands that may bind many aGPCRs, how this binding is translated into changes in the GAIN domain, and the exact mechanism of aGPCR activation following GAIN domain conformational changes. This review aims to examine the current knowledge around aGPCR activation, including ligand binding sites, the mechanism of GAIN domain-mediated receptor activation and how aGPCR transmembrane domains may relate to activation. Other aspects of aGPCR signalling will be touched upon, such as downstream effectors and physiological roles.


2021 ◽  
Vol 120 (3) ◽  
pp. 304a
Author(s):  
Shristi Pawnikar ◽  
Brenda Magenheimer ◽  
Robin Maser ◽  
Yinglong Miao

2021 ◽  
Vol 22 (2) ◽  
pp. 869
Author(s):  
Rachel Price ◽  
Nicola Biagio Mercuri ◽  
Ada Ledonne

Protease-activated receptors (PARs) are a class of G protein-coupled receptors (GPCRs) with a unique mechanism of activation, prompted by a proteolytic cleavage in their N-terminal domain that uncovers a tethered ligand, which binds and stimulates the same receptor. PARs subtypes (PAR1-4) have well-documented roles in coagulation, hemostasis, and inflammation, and have been deeply investigated for their function in cellular survival/degeneration, while their roles in the brain in physiological conditions remain less appreciated. Here, we describe PARs’ effects in the modulation of neurotransmission and synaptic plasticity. Available evidence, mainly concerning PAR1-mediated and PAR2-mediated regulation of glutamatergic and GABAergic transmission, supports that PARs are important modulators of synaptic efficacy and plasticity in normal conditions.


Sign in / Sign up

Export Citation Format

Share Document