Chitosan and Derivatives: Bioactivities and Application in Foods

Author(s):  
Da-Yong Zhou ◽  
Zi-Xuan Wu ◽  
Fa-Wen Yin ◽  
Shuang Song ◽  
Ao Li ◽  
...  

Chitosan is a biodegradable, biocompatible, and nontoxic aminopolysaccharide. This review summarizes and discusses the structural modifications, including substitution, grafting copolymerization, cross-linking, and hydrolysis, utilized to improve the physicochemical properties and enhance the bioactivity and functionality of chitosan and related materials. This manuscript also reviews the current progress and potential of chitosan and its derivatives in body-weight management and antihyperlipidemic, antihyperglycemic, antihypertensive, antimicrobial antioxidant, anti-inflammatory, and immunostimulatory activities as well as their ability to interact with gut microbiota. In addition, the potential of chitosan and its derivatives as functional ingredients in food systems, such as film and coating materials, and delivery systems is discussed. This manuscript aims to provide up-to-date information to stimulate future discussion and research to promote the value-added utilization of chitosan in improving the safety, quality, nutritional value and health benefits, and sustainability of our food system while reducing the environmental hazards. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 12 is March 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Author(s):  
Shenggen Fan ◽  
Derek Headey ◽  
Christopher Rue ◽  
Timothy Thomas

Food systems are currently facing unprecedented challenges. More than 690 million people still suffer hunger while climate change, rapid depletion of natural resources, and loss of biodiversity further threaten future food systems. Influential global reports emphasize the need for fundamental transformations of food systems for human and planetary health, but few incorporate economic considerations. This review adopts an economic lens to assessing potential transitions to ideal food systems that are productive, sustainable, nutritious, resilient, and inclusive. Our findings show that new technologies, policies, institutions, and behavior changes can leverage synergies for achieving multiple food system targets, but rigorous economic analysis is needed to further analyze trade-offs and to overcome complex behavioral, institutional, and political barriers. This review also points to important knowledge gaps that economists and other social scientists must address to contribute to the radical transformation of food systems. Expected final online publication date for the Annual Review of Resource Economics, Volume 13 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Shenggen Fan ◽  
Emily EunYoung Cho ◽  
Ting Meng ◽  
Christopher Rue

The global food system faces major risks and threats that can cause massive economic loss; dislocation of food supply chains; and welfare loss of producers, consumers, and other food system actors. The interrelated nature of the system has highlighted the complexity of risks. Climate change, extreme weather events, and degradation and depletion of natural resources, including water, arable, forestry, and pastural lands, loss of biodiversity, emerging diseases, trade chokepoints and disruptions, macroeconomic shocks, and conflicts, can each seriously disrupt the system. Coincidence of these risks can compound the effects on global food security and nutrition. Smallholder farmers, rural migrants, women, youth, children, low-income populations, and other disadvantaged groups are particularly vulnerable. The coronavirus disease 2019 (COVID-19) pandemic exemplifies a perfect storm of coincidental risks. This article reviews major risks that most significantly impact food systems and highlights the importance of prospects for coincidence of risks. We present pathways to de-risk food systems and a way forward to ensure healthy, sustainable, inclusive, and resilient food systems. Expected final online publication date for the Annual Review of Environment and Resources, Volume 46 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
William R. Aimutis

Our global population is growing at a pace to exceed 10 billion people by the year 2050. This growth will place pressure on the agricultural production of food to feed the hungry masses. One category that will be strained is protein. Per capita protein consumption is rising in virtually every country for both nutritional reasons and consumption enjoyment. The United Nations estimates protein demand will double by 2050, and this will result in a critical overall protein shortage if drastic changes are not made in the years preceding these changes. Therefore, the world is in the midst of identifying technological breakthroughs to make protein more readily available and sustainable for future generations. One protein sourcing category that has grown in the past decade is plant-based proteins, which seem to fit criteria established by discerning consumers, including healthy, sustainable, ethical, and relatively inexpensive. Although demand for plant-based protein continues to increase, these proteins are challenging to utilize in novel food formulations. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Saeed M. Ghazani ◽  
Alejandro G. Marangoni

Cocoa butter displays complex crystallization behavior and six crystal polymorphic forms. Although the crystal structure of cocoa butter has been studied extensively, the molecular interactions between cocoa butter triacylglycerols in relation to polymorphic transformations from metastable forms (forms III and IV) to stable crystal forms (forms V and VI) remain largely unknown. In this review, the triclinic polymorphism and melting profiles of the major triacylglycerols in cocoa butter—POP, POS, and SOS—are reviewed, and their binary and ternary phase behaviors in metastable (pseudoβ′) and stable (β2) crystal forms are discussed. We also attempt to clarify how the transformation of cocoa butter from form IV to V, as a critical step in the tempering of chocolate, is controlled by POS interactions with both POP and SOS. Moreover, we show how the crystal forms V and VI of cocoa butter are templated by crystal forms β3 and β1 of POS, respectively. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 12 is March 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Vanessa Las Heras ◽  
Silvia Melgar ◽  
John MacSharry ◽  
Cormac G.M. Gahan

Diet exerts a major influence upon host immune function and the gastrointestinal microbiota. Although components of the human diet (including carbohydrates, fats, and proteins) are essential sources of nutrition for the host, they also influence immune function directly through interaction with innate and cell-mediated immune regulatory mechanisms. Regulation of the microbiota community structure also provides a mechanism by which food components influence host immune regulatory processes. Here, we consider the complex interplay between components of the modern (Western) diet, the microbiota, and host immunity in the context of obesity and metabolic disease, inflammatory bowel disease, and infection. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Yoo Seok Lee ◽  
Koun Lim ◽  
Shelley D. Minteer

Enzyme cascades are plentiful in nature, but they also have potential in artificial applications due to the possibility of using the target substrate in biofuel cells, electrosynthesis, and biosensors. Cascade reactions from enzymes or hybrid bioorganic catalyst systems exhibit extended substrate range, reaction depth, and increased overall performance. This review addresses the strategies of cascade biocatalysis and bioelectrocatalysis for ( a) CO2 fixation, ( b) high value-added product formation, ( c) sustainable energy sources via deep oxidation, and ( d) cascaded electrochemical enzymatic biosensors. These recent updates in the field provide fundamental concepts, designs of artificial electrocatalytic oxidation-reduction pathways (using a flexible setup involving organic catalysts and engineered enzymes), and advances in hybrid cascaded sensors for sensitive analyte detection. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 72 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Mark Budolfson

This chapter identifies and critically examines a standard form of argument for organic and vegan alternatives to industrial agriculture. This argument faces important objections to its empirical premises, to its presumption that there is a single food system that minimizes harm and is best for the environment, and to the presumption that the ethically best food system for us to promote is the one that would be best in ideal theory or the one that would be best from the perspective of our own society. Instead, determining which food system should be promoted arguably requires a complex global, empirical, and ethical integrated assessment that includes a proper accounting for values of global justice in nonideal theory. This proper accounting arguably recommends sustainable intensification of food systems (as it is called in the food-science literature), which is importantly distinct from contemporary systems as well as from organic, local, and/or vegan-centered alternatives.


Author(s):  
Shang Lin ◽  
Jane W. Agger ◽  
Casper Wilkens ◽  
Anne S. Meyer

Cereal brans and grain endosperm cell walls are key dietary sources of different types of arabinoxylan. Arabinoxylan is the main group of hemicellulosic polysaccharides that are present in the cell walls of monocot grass crops and hence in cereal grains. The arabinoxylan polysaccharides consist of a backbone of β-(1→4)-linked xylopyranosyl residues, which carry arabinofuranosyl moieties, hence the term arabinoxylan. Moreover, the xylopyranosyl residues can be acetylated or substituted by methyl-glucuronic acid. The arabinofuranosyls may be esterified with a feruloyl group. Feruloylated arabinoxylo-oligosaccharides exert beneficial bioactivities via prebiotic, immunomodulatory, and/or antioxidant effects. New knowledge on microbial enzymes that catalyze specific structural modifications of arabinoxylans can help us understand how these complex fibers are converted in the gut and provide a foundation for the production of feruloylated arabinoxylo-oligosaccharides from brans or other cereal grain processing sidestreams as functional food ingredients. There is a gap between the structural knowledge, bioactivity data, and enzymology insight. Our goal with this review is to present an overview of the structures and bioactivities of feruloylated arabinoxylo-oligosaccharides and review the enzyme reactions that catalyze specific changes in differentially substituted arabinoxylans. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 12 is March 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Christine L. Plavchak ◽  
William C. Smith ◽  
Carmen R.M. Bria ◽  
S. Kim Ratanathanawongs Williams

Field-flow fractionation (FFF) is a family of techniques that was created especially for separating and characterizing macromolecules, nanoparticles, and micrometer-sized analytes. It is coming of age as new nanomaterials, polymers, composites, and biohybrids with remarkable properties are introduced and new analytical challenges arise due to synthesis heterogeneities and the motivation to correlate analyte properties with observed performance. Appreciation of the complexity of biological, pharmaceutical, and food systems and the need to monitor multiple components across many size scales have also contributed to FFF's growth. This review highlights recent advances in FFF capabilities, instrumentation, and applications that feature the unique characteristics of different FFF techniques in determining a variety of information, such as averages and distributions in size, composition, shape, architecture, and microstructure and in investigating transformations and function. Expected final online publication date for the Annual Review of Analytical Chemistry, Volume 14 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Konstantina Kyriakopoulou ◽  
Julia K. Keppler ◽  
Atze Jan van der Goot ◽  
Remko M. Boom

The increasing size and affluence of the global population have led to a rising demand for high-protein foods such as dairy and meat. Because it will be impossible to supply sufficient protein to everyone solely with dairy and meat, we need to transition at least part of our diets toward protein foods that are more sustainable to produce. The best way to convince consumers to make this transition is to offer products that easily fit into their current habits and diets by mimicking the original foods. This review focuses on methods of creating an internal microstructure close to that of the animal-based originals. One can directly employ plant products, use intermediates such as cell factories, or grow cultured meat by using nutrients of plant origin. We discuss methods of creating high-quality alternatives to meat and dairy foods, describe their relative merits, and provide an outlook toward the future. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 12 is March 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document