The Water Mass Transformation Framework for Ocean Physics and Biogeochemistry

2019 ◽  
Vol 11 (1) ◽  
pp. 271-305 ◽  
Author(s):  
Sjoerd Groeskamp ◽  
Stephen M. Griffies ◽  
Daniele Iudicone ◽  
Robert Marsh ◽  
A.J. George Nurser ◽  
...  

The water mass transformation (WMT) framework weaves together circulation, thermodynamics, and biogeochemistry into a description of the ocean that complements traditional Eulerian and Lagrangian methods. In so doing, a WMT analysis renders novel insights and predictive capabilities for studies of ocean physics and biogeochemistry. In this review, we describe fundamentals of the WMT framework and illustrate its practical analysis capabilities. We show how it provides a robust methodology to characterize and quantify the impact of physical processes on buoyancy and other thermodynamic fields. We also detail how to extend WMT to insightful analysis of biogeochemical cycles.

2020 ◽  
Author(s):  
Sjoerd Groeskamp

<p>To understand the role of the ocean in the climate system, it is no longer sufficient to study either physics or biogeochemistry. Future efforts need to combine these disciplines to truly understand our future climate. The water mass transformation (WMT) weaves together circulation, thermodynamics, and biogeochemistry into a description of the ocean that complements traditional Eulerian and Lagrangian methods. Here we present a derivation of a WMT framework that offers an analysis that renders novel insights and predictive capabilities for studies of ocean physics and biogeochemistry that determine ocean tracer uptake, circulation and storage. We will discuss application for this framework for biogeochemical studies and its potential for inferring unmeasurable biogeochemical processes from estimates of the measurable physical processes.</p>


2008 ◽  
Vol 58 (3-4) ◽  
pp. 275-288 ◽  
Author(s):  
Ariane Koch-Larrouy ◽  
Gurvan Madec ◽  
Daniele Iudicone ◽  
Agus Atmadipoera ◽  
Robert Molcard

2020 ◽  
Author(s):  
Carine van der Boog ◽  
Julie D Pietrzak ◽  
Henk A Dijkstra ◽  
Caroline A Katsman

<p>Thermohaline staircases are stepped structures in the temperature and salinity stratification that result from double diffusive processes. In the open ocean, double diffusive processes enhance the downgradient diapycnal heat transfer compared to turbulent mixing. However, in combination with salinity effects, the resulting buoyancy flux within the thermohaline staircases is counter gradient. This vertical density transport strengthens the stratification and, consequently, affects the density of the water masses above and below the staircase layer. Although 44 percent of the world’s oceans is susceptible to double diffusion and thermohaline staircases are ubiquitous in these regions, the impact of double diffusion on diapycnal heat transfer and on water mass transformation has not been quantified yet. Here, we analyse a dataset of Argo float profiles to obtain a global overview of the occurrence of thermohaline staircases and to estimate their impact on diapycnal heat transfer and water mass transformation. Several regions with a high staircase occurrence are identified. Besides the well-known regions in the Caribbean Sea, the Mediterranean Sea and the subtropical Atlantic Ocean, our analysis reveals a new staircase region in the Indian Ocean. Using this global overview, we estimate, for the first time, the contribution of downgradient diapycnal heat transfer by the staircases. It appears that this contribution is very low compared to the dissipation required to maintain the observed temperature stratification. However, each staircase region can potentially impact the global circulation by affecting the density of the water masses above and below. In particular, the staircase region in the Indian Ocean overlies the waters of the Tasman Leakage. These waters flow westward from Australia towards the Agulhas region and affect the properties of waters entering the Atlantic Ocean. This implies that the vertical flux of salt into the Tasman Leakage waters induced by the presence of thermohaline staircases above can impact the salt transport into the Atlantic Ocean, which in turn is expected to impact the Atlantic Meridional Overturning Circulation. </p>


Author(s):  
Felix M. Schulte ◽  
◽  
Axel Wittmann ◽  
Stefan Jung ◽  
Joanna V. Morgan ◽  
...  

AbstractCore from Hole M0077 from IODP/ICDP Expedition 364 provides unprecedented evidence for the physical processes in effect during the interaction of impact melt with rock-debris-laden seawater, following a large meteorite impact into waters of the Yucatán shelf. Evidence for this interaction is based on petrographic, microstructural and chemical examination of the 46.37-m-thick impact melt rock sequence, which overlies shocked granitoid target rock of the peak ring of the Chicxulub impact structure. The melt rock sequence consists of two visually distinct phases, one is black and the other is green in colour. The black phase is aphanitic and trachyandesitic in composition and similar to melt rock from other sites within the impact structure. The green phase consists chiefly of clay minerals and sparitic calcite, which likely formed from a solidified water–rock debris mixture under hydrothermal conditions. We suggest that the layering and internal structure of the melt rock sequence resulted from a single process, i.e., violent contact of initially superheated silicate impact melt with the ocean resurge-induced water–rock mixture overriding the impact melt. Differences in density, temperature, viscosity, and velocity of this mixture and impact melt triggered Kelvin–Helmholtz and Rayleigh–Taylor instabilities at their phase boundary. As a consequence, shearing at the boundary perturbed and, thus, mingled both immiscible phases, and was accompanied by phreatomagmatic processes. These processes led to the brecciation at the top of the impact melt rock sequence. Quenching of this breccia by the seawater prevented reworking of the solidified breccia layers upon subsequent deposition of suevite. Solid-state deformation, notably in the uppermost brecciated impact melt rock layers, attests to long-term gravitational settling of the peak ring.


Author(s):  
Ken X. Zhao ◽  
Andrew L. Stewart ◽  
James C. McWilliams

AbstractThe oceanic connections between tidewater glaciers and continental shelf waters are modulated and controlled by geometrically complex fjords. These fjords exhibit both overturning circulations and horizontal recirculations, driven by a combination of water mass transformation at the head of the fjord, variability on the continental shelf, and atmospheric forcing. However, it remains unclear which geometric and forcing parameters are the most important in exerting control on the overturning and horizontal recirculation. To address this, idealized numerical simulations are conducted using an isopycnal model of a fjord connected to a continental shelf, which is representative of regions in Greenland and the West Antarctic Peninsula. A range of sensitivity experiments demonstrate that sill height, wind direction/strength, subglacial discharge strength, and depth of offshore warm water are of first-order importance to the overturning circulation, while fjord width is also of leading importance to the horizontal recirculation. Dynamical predictions are developed and tested for the overturning circulation of the entire shelf-to-glacierface domain, subdivided into three regions: the continental shelf extending from the open ocean to the fjord mouth, the sill-overflow at the fjord mouth, and the plume-driven water mass transformation at the fjord head. A vorticity budget is also developed to predict the strength of the horizontal recirculation, which provides a scaling in terms of the overturning and bottom friction. Based on these theories, we may predict glacial melt rates that take into account overturning and recirculation, which may be used to refine estimates of ocean-driven melting of the Greenland and Antarctic ice sheets.


2021 ◽  
Author(s):  
Fan Wang ◽  
Jingjing Xu ◽  
Yanbin Ge ◽  
Shengyong Xu ◽  
Yanjun Fu ◽  
...  

Abstract The physical processes occurring at open Na+ channels in neural fibers are essential for understanding the nature of neural signals and the mechanism by which the signals are generated and transmitted along nerves. However, there is less generally accepted description of these physical processes. We studied changes in the transmembrane ionic flux and the resulting two types of electromagnetic signals by simulating the Na+ transport across a bionic nanochannel model simplified from voltage-gated Na+ channels. Results show that the Na+ flux can reach a steady state in approximately 10 ns owing to the dynamic equilibrium of Na+ ions concentration difference between the both sides of membrane. After characterizing the spectrum and transmission of these two electromagnetic signals, the low-frequency transmembrane electric field is regarded as the physical quantity transmitting in waveguide-like lipid dielectric layer and triggering the neighboring voltage-gated channels. Factors influencing the Na+ flux transport are also studied. The impact of the Na+ concentration gradient is found higher than that of the initial transmembrane potential on the Na+ transport rate, and introducing the surface-negative charge in the upper third channel could increase the transmembrane Na+ current. This work can be further studied by improving the simulation model; however, the current work helps to better understand the electrical functions of voltage-gated ion channels in neural systems.


2021 ◽  
Author(s):  
Dylan Charles Shamban Oldenburg ◽  
Robert C. J. Wills ◽  
Kyle Armour ◽  
LuAnne Thompson

2017 ◽  
Vol 11 (1) ◽  
pp. 219-238 ◽  
Author(s):  
Laxmi Goparaju ◽  
P. Rama Chandra Prasad ◽  
Firoz Ahmad

Abstract Forests, the backbone of biogeochemical cycles and life supporting systems, are under severe pressure due to varied anthropogenic activities. Mining activities are one among the major reasons for forest destruction questioning the survivability and sustainability of flora and fauna existing in that area. Thus, monitoring and managing the impact of mining activities on natural resources at regular intervals is necessary to check the status of their depleted conditions, and to take up restoration and conservative measurements. Geospatial technology provides means to identify the impact of different mining operations on forest ecosystems and helps in proposing initiatives for safeguarding the forest environment. In this context, the present study highlights the problems related to mining in forest ecosystems and elucidates how geospatial technology can be employed at various stages of mining activities to achieve a sustainable forest ecosystem. The study collates information from various sources and highlights the role of geospatial technology in mining industries and reclamation process.


2016 ◽  
Vol 2 (10) ◽  
pp. e1600492 ◽  
Author(s):  
Roberto Danovaro ◽  
Antonio Dell’Anno ◽  
Cinzia Corinaldesi ◽  
Eugenio Rastelli ◽  
Ricardo Cavicchioli ◽  
...  

Viruses are the most abundant biological entities in the world’s oceans, and they play a crucial role in global biogeochemical cycles. In deep-sea ecosystems, archaea and bacteria drive major nutrient cycles, and viruses are largely responsible for their mortality, thereby exerting important controls on microbial dynamics. However, the relative impact of viruses on archaea compared to bacteria is unknown, limiting our understanding of the factors controlling the functioning of marine systems at a global scale. We evaluate the selectivity of viral infections by using several independent approaches, including an innovative molecular method based on the quantification of archaeal versus bacterial genes released by viral lysis. We provide evidence that, in all oceanic surface sediments (from 1000- to 10,000-m water depth), the impact of viral infection is higher on archaea than on bacteria. We also found that, within deep-sea benthic archaea, the impact of viruses was mainly directed at members of specific clades of Marine Group I Thaumarchaeota. Although archaea represent, on average, ~12% of the total cell abundance in the top 50 cm of sediment, virus-induced lysis of archaea accounts for up to one-third of the total microbial biomass killed, resulting in the release of ~0.3 to 0.5 gigatons of carbon per year globally. Our results indicate that viral infection represents a key mechanism controlling the turnover of archaea in surface deep-sea sediments. We conclude that interactions between archaea and their viruses might play a profound, previously underestimated role in the functioning of deep-sea ecosystems and in global biogeochemical cycles.


Sign in / Sign up

Export Citation Format

Share Document