The Water Mass Transformation Framework for Ocean Physics and Biogeochemistry

Author(s):  
Sjoerd Groeskamp

<p>To understand the role of the ocean in the climate system, it is no longer sufficient to study either physics or biogeochemistry. Future efforts need to combine these disciplines to truly understand our future climate. The water mass transformation (WMT) weaves together circulation, thermodynamics, and biogeochemistry into a description of the ocean that complements traditional Eulerian and Lagrangian methods. Here we present a derivation of a WMT framework that offers an analysis that renders novel insights and predictive capabilities for studies of ocean physics and biogeochemistry that determine ocean tracer uptake, circulation and storage. We will discuss application for this framework for biogeochemical studies and its potential for inferring unmeasurable biogeochemical processes from estimates of the measurable physical processes.</p>

2019 ◽  
Vol 11 (1) ◽  
pp. 271-305 ◽  
Author(s):  
Sjoerd Groeskamp ◽  
Stephen M. Griffies ◽  
Daniele Iudicone ◽  
Robert Marsh ◽  
A.J. George Nurser ◽  
...  

The water mass transformation (WMT) framework weaves together circulation, thermodynamics, and biogeochemistry into a description of the ocean that complements traditional Eulerian and Lagrangian methods. In so doing, a WMT analysis renders novel insights and predictive capabilities for studies of ocean physics and biogeochemistry. In this review, we describe fundamentals of the WMT framework and illustrate its practical analysis capabilities. We show how it provides a robust methodology to characterize and quantify the impact of physical processes on buoyancy and other thermodynamic fields. We also detail how to extend WMT to insightful analysis of biogeochemical cycles.


2000 ◽  
Vol 13 (11) ◽  
pp. 1879-1898 ◽  
Author(s):  
Gerald A. Meehl ◽  
William D. Collins ◽  
Byron A. Boville ◽  
Jeffrey T. Kiehl ◽  
T. M. L. Wigley ◽  
...  

2004 ◽  
Vol 16 (4) ◽  
pp. 361-361
Author(s):  
EBERHARD FAHRBACH

The limits of the Southern Ocean and its importance have been under debate for a long time. However, with growing knowledge, it has become obvious that the circum-Antarctic water belt is the defining limit and that the Southern Ocean plays an active and important role in the physical part of the global climate system, the global carbon cycle and biogeochemical processes.


2008 ◽  
Vol 58 (3-4) ◽  
pp. 275-288 ◽  
Author(s):  
Ariane Koch-Larrouy ◽  
Gurvan Madec ◽  
Daniele Iudicone ◽  
Agus Atmadipoera ◽  
Robert Molcard

Author(s):  
Paul D Williams

Our understanding of the climate system has been revolutionized recently, by the development of sophisticated computer models. The predictions of such models are used to formulate international protocols, intended to mitigate the severity of global warming and its impacts. Yet, these models are not perfect representations of reality, because they remove from explicit consideration many physical processes which are known to be key aspects of the climate system, but which are too small or fast to be modelled. The purpose of this paper is to give a personal perspective of the current state of knowledge regarding the problem of unresolved scales in climate models. A recent novel solution to the problem is discussed, in which it is proposed, somewhat counter-intuitively, that the performance of models may be improved by adding random noise to represent the unresolved processes.


2018 ◽  
Vol 15 (21) ◽  
pp. 6573-6589 ◽  
Author(s):  
Audrey Gimenez ◽  
Melika Baklouti ◽  
Thibaut Wagener ◽  
Thierry Moutin

Abstract. The Oligotrophy to UlTra-oligotrophy PACific Experiment (OUTPACE) cruise took place in the western tropical South Pacific (WTSP) during the austral summer (March–April 2015). The aim of the OUTPACE project was to investigate a longitudinal gradient of biological and biogeochemical features in the WTSP, and especially the role of N2 fixation in the C, N, and P cycles. Two contrasted regions were considered in this study: the Western Melanesian Archipelago (WMA), characterized by high N2 fixation rates, significant surface production and low dissolved inorganic phosphorus (DIP) concentrations, and the South Pacific Gyre (WGY), characterized by very low N2 fixation rates, surface production and high DIP concentrations. Since physical forcings and mixed layer dynamics in both regions were similar, it was considered that the gradient of oligotrophy observed in situ between the WMA and WGY was not explained by differences in physical processes, but rather by differences in biogeochemical processes. A one-dimensional physical–biogeochemical coupled model was used to investigate the role of N2 fixation in the WTSP by running two identical simulations, only differing by the presence (simWMA) or absence (simWGY) of diazotrophs. We showed that the nitracline and the phosphacline had to be, respectively, deeper and shallower than the mixed layer depth (MLD) to bring N-depleted and P-repleted waters to the surface during winter mixing, thereby creating favorable conditions for the development of diazotrophs. We also concluded that a preferential regeneration of the detrital phosphorus (P) matter was necessary to obtain this gap between the nitracline and phosphacline depths, as the nutricline depths significantly depend on the regeneration of organic matter in the water column. Moreover, the model enabled us to highlight the presence of seasonal variations in primary production and P availability in the upper surface waters in simWMA, where diazotrophs provided a new source of nitrogen (N) to the ecosystem, whereas no seasonal variations were obtained in simWGY, in the absence of diazotrophs. These main results emphasized the fact that surface production dynamics in the WTSP is based on a complex and sensitive system which depends on the one hand on physical processes (vertical mixing, sinking of detrital particles), and on the other hand on biogeochemical processes (N2 fixation, remineralization).


Author(s):  
Lidiya Derbenyova

The article explores the role of antropoetonyms in the reader’s “horizon of expectation” formation. As a kind of “text in the text”, antropoetonyms are concentrating a large amount of information on a minor part of the text, reflecting the main theme of the work. As a “text” this class of poetonyms performs a number of functions: transmission and storage of information, generation of new meanings, the function of “cultural memory”, which explains the readers’ “horizon of expectations”. In analyzing the context of the literary work we should consider the function of antropoetonyms in vertical context (the link between artistic and other texts, and the groundwork system of culture), as well as in the context of the horizontal one (times’ connection realized in the communication chain from the word to the text; the author’s intention). In this aspect, the role of antropoetonyms in the structure of the literary text is extremely significant because antropoetonyms convey an associative nature, generating a complex mechanism of allusions. It’s an open fact that they always transmit information about the preceding text and suggest a double decoding. On the one hand, the recipient decodes this information, on the other – accepts this as a sort of hidden, “secret” sense.


Sign in / Sign up

Export Citation Format

Share Document