Interactions Among Three Trophic Levels: Influence of Plants on Interactions Between Insect Herbivores and Natural Enemies

1980 ◽  
Vol 11 (1) ◽  
pp. 41-65 ◽  
Author(s):  
P W Price ◽  
C E Bouton ◽  
P Gross ◽  
B A McPheron ◽  
J N Thompson ◽  
...  
Insects ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 765
Author(s):  
Ussawit Srisakrapikoop ◽  
Tara J. Pirie ◽  
Mark D. E. Fellowes

Indirect effects are ubiquitous in nature, and have received much attention in terrestrial plant–insect herbivore–enemy systems. In such tritrophic systems, changes in plant quality can have consequential effects on the behavior and abundance of insect predators and parasitoids. Plant quality as perceived by insect herbivores may vary for a range of reasons, including because of infection by plant pathogens. However, plant diseases vary in their origin (viral, bacterial or fungal) and as a result may have differing effects on plant physiology. To investigate if the main groups of plant pathogens differ in their indirect effects on higher trophic levels, we performed a meta-analysis using 216 measured responses from 29 primary studies. There was no overall effect of plant pathogens on natural enemy traits as differences between pathogen types masked their effects. Infection by fungal plant pathogens showed indirect negative effects on the performance and preference of natural enemies via both chewing and piercing-sucking insect herbivore feeding guilds. Infection by bacterial plant pathogens had a positive effect on the natural enemies (parasitoids) of chewing herbivores. Infection by viral plant pathogens showed no clear effect, although parasitoid preference may be positively affected by their presence. It is important to note that given the limited volume of studies to date on such systems, this work should be considered exploratory. Plant pathogens are very common in nature, and tritrophic systems provide an elegant means to examine the consequences of indirect interactions in ecology. We suggest that further studies examining how plant pathogens affect higher trophic levels would be of considerable value.


Author(s):  
J. H. Lawton ◽  
M. MacGarvin

SynopsisBracken in Britain is a host for 27 species of insect herbivores, with a further 11 species that either feed below ground (and are poorly studied), or appear to be only rarely associated with the plant. A typical site in northern England has an average of 15–16 of these species in any one year. Compared with perennial herbaceous angiosperms with similar wide distributions, bracken is not noticeably depauperate in the number of insect species that feed upon it. Bracken in others parts of the world is attacked by a wide variety of insects, with more species present in the geographical areas where bracken is most common.The ‘feeding niches’ of some of these insects are reviewed. Most are very rare relative to the biomass of their host plants, probably because of the impact of natural enemies; the effect of most of the insects upon their host-plant is consequently negligible.Reverse effects, of host-plant upon the insects, are subtle but poorly understood. Experiments to elucidate these effects are briefly outlined.


2007 ◽  
Vol 21 (1) ◽  
Author(s):  
JOCHEN KRAUSS ◽  
SIMONE A. HÄRRI ◽  
LOWELL BUSH ◽  
RENÉ HUSI ◽  
LAURENT BIGLER ◽  
...  

2018 ◽  
Vol 20 (1) ◽  
pp. 59
Author(s):  
Albert Rivas-Ubach ◽  
Josep Peñuelas ◽  
José Hódar ◽  
Michal Oravec ◽  
Ljiljana Paša-Tolić ◽  
...  

Many studies have addressed several plant-insect interaction topics at nutritional, molecular, physiological, and evolutionary levels. However, it is still unknown how flexible the metabolism and the nutritional content of specialist insect herbivores feeding on different closely related plants can be. We performed elemental, stoichiometric, and metabolomics analyses on leaves of two coexisting Pinus sylvestris subspecies and on their main insect herbivore; the caterpillar of the processionary moth (Thaumetopoea pityocampa). Caterpillars feeding on different pine subspecies had distinct overall metabolome structure, accounting for over 10% of the total variability. Although plants and insects have very divergent metabolomes, caterpillars showed certain resemblance to their plant-host metabolome. In addition, few plant-related secondary metabolites were found accumulated in caterpillar tissues which could potentially be used for self-defense. Caterpillars feeding on N and P richer needles had lower N and P tissue concentration and higher C:N and C:P ratios, suggesting that nutrient transfer is not necessarily linear through trophic levels and other plant-metabolic factors could be interfering. This exploratory study showed that little chemical differences between plant food sources can impact the overall metabolome of specialist insect herbivores. Significant nutritional shifts in herbivore tissues could lead to larger changes of the trophic web structure.


2019 ◽  
Vol 81 (3) ◽  
pp. 458
Author(s):  
Gautam Kunal Anil ◽  
T. N. Goswami ◽  
R. B. P. Nirala ◽  
S. S. Acharya

2015 ◽  
Vol 148 (S1) ◽  
pp. S33-S57 ◽  
Author(s):  
V.G. Nealis

AbstractThe comparative ecology of conifer-feeding budworms in the genusChoristoneuraLederer (Lepidoptera: Tortricidae) in Canada is reviewed with emphasis on publications since 1980. Systematics and life history are updated and historical outbreak patterns and their current interpretation summarised. Recent evidence is analysed in the context of ecological interactions among three trophic levels; host plant, budworm herbivore, and natural enemies. The influence of weather and climate are viewed as modulating factors. The population behaviour of budworms is interpreted as the result of tri-trophic interactions that vary at different scales. The result of these multi-scale interactions is that despite shared phylogenetic constraints and common adaptations, different budworm species display different population behaviour because of specific ecological relationships with their respective hosts and natural enemies.


Oecologia ◽  
2021 ◽  
Author(s):  
Felix Fornoff ◽  
Michael Staab ◽  
Chao-Dong Zhu ◽  
Alexandra-Maria Klein

AbstractPlant diversity affects multi-trophic communities, but in young regrowth forests, where forest insects are in the process of re-establishment, other biotic and also abiotic factors might be more important. We studied cavity-nesting bees, wasps and their natural enemies along an experimental tree diversity gradient in subtropical South-East China. We compared insect communities of experimental young forests with communities of established natural forests nearby the experiment and tested for direct and indirect effects of tree diversity, tree basal area (a proxy of tree biomass), canopy cover and microclimate on bee and wasp community composition, abundance and species richness. Finally, we tested if the trophic levels of bees, herbivore-hunting wasps, spider-hunting wasps and their natural enemies respond similarly. Forest bee and wasp community composition re-established towards communities of the natural forest with increasing tree biomass and canopy cover. These factors directly and indirectly, via microclimatic conditions, increased the abundance of bees, wasps and their natural enemies. While bee and wasp species richness increased with abundance and both were not related to tree diversity, abundance increased directly with canopy cover, mediated by tree biomass. Abundance of natural enemies increased with host (bee and wasp) abundance irrespective of their trophic position. In conclusion, although maximizing tree diversity is an important goal of reforestation and forest conservation, rapid closure of canopies is also important for re-establishing communities of forest bees, wasps and their natural enemies.


Sign in / Sign up

Export Citation Format

Share Document