scholarly journals Effects of fertilizer, fungal endophytes and plant cultivar on the performance of insect herbivores and their natural enemies

2007 ◽  
Vol 21 (1) ◽  
Author(s):  
JOCHEN KRAUSS ◽  
SIMONE A. HÄRRI ◽  
LOWELL BUSH ◽  
RENÉ HUSI ◽  
LAURENT BIGLER ◽  
...  
Author(s):  
J. H. Lawton ◽  
M. MacGarvin

SynopsisBracken in Britain is a host for 27 species of insect herbivores, with a further 11 species that either feed below ground (and are poorly studied), or appear to be only rarely associated with the plant. A typical site in northern England has an average of 15–16 of these species in any one year. Compared with perennial herbaceous angiosperms with similar wide distributions, bracken is not noticeably depauperate in the number of insect species that feed upon it. Bracken in others parts of the world is attacked by a wide variety of insects, with more species present in the geographical areas where bracken is most common.The ‘feeding niches’ of some of these insects are reviewed. Most are very rare relative to the biomass of their host plants, probably because of the impact of natural enemies; the effect of most of the insects upon their host-plant is consequently negligible.Reverse effects, of host-plant upon the insects, are subtle but poorly understood. Experiments to elucidate these effects are briefly outlined.


Insects ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 765
Author(s):  
Ussawit Srisakrapikoop ◽  
Tara J. Pirie ◽  
Mark D. E. Fellowes

Indirect effects are ubiquitous in nature, and have received much attention in terrestrial plant–insect herbivore–enemy systems. In such tritrophic systems, changes in plant quality can have consequential effects on the behavior and abundance of insect predators and parasitoids. Plant quality as perceived by insect herbivores may vary for a range of reasons, including because of infection by plant pathogens. However, plant diseases vary in their origin (viral, bacterial or fungal) and as a result may have differing effects on plant physiology. To investigate if the main groups of plant pathogens differ in their indirect effects on higher trophic levels, we performed a meta-analysis using 216 measured responses from 29 primary studies. There was no overall effect of plant pathogens on natural enemy traits as differences between pathogen types masked their effects. Infection by fungal plant pathogens showed indirect negative effects on the performance and preference of natural enemies via both chewing and piercing-sucking insect herbivore feeding guilds. Infection by bacterial plant pathogens had a positive effect on the natural enemies (parasitoids) of chewing herbivores. Infection by viral plant pathogens showed no clear effect, although parasitoid preference may be positively affected by their presence. It is important to note that given the limited volume of studies to date on such systems, this work should be considered exploratory. Plant pathogens are very common in nature, and tritrophic systems provide an elegant means to examine the consequences of indirect interactions in ecology. We suggest that further studies examining how plant pathogens affect higher trophic levels would be of considerable value.


2019 ◽  
Vol 81 (3) ◽  
pp. 458
Author(s):  
Gautam Kunal Anil ◽  
T. N. Goswami ◽  
R. B. P. Nirala ◽  
S. S. Acharya

2022 ◽  
Vol 12 ◽  
Author(s):  
Daniel A. Bastías ◽  
Ludmila Bubica Bustos ◽  
Ruy Jáuregui ◽  
Andrea Barrera ◽  
Ian S. Acuña-Rodríguez ◽  
...  

Seeds commonly harbour diverse bacterial communities that can enhance the fitness of future plants. The bacterial microbiota associated with mother plant’s foliar tissues is one of the main sources of bacteria for seeds. Therefore, any ecological factor influencing the mother plant’s microbiota may also affect the diversity of the seed’s bacterial community. Grasses form associations with beneficial vertically transmitted fungal endophytes of genus Epichloë. The interaction of plants with Epichloë endophytes and insect herbivores can influence the plant foliar microbiota. However, it is unknown whether these interactions (alone or in concert) can affect the assembly of bacterial communities in the produced seed. We subjected Lolium multiflorum plants with and without its common endophyte Epichloë occultans (E+, E-, respectively) to an herbivory treatment with Rhopalosiphum padi aphids and assessed the diversity and composition of the bacterial communities in the produced seed. The presence of Epichloë endophytes influenced the seed bacterial microbiota by increasing the diversity and affecting the composition of the communities. The relative abundances of the bacterial taxa were more similarly distributed in communities associated with E+ than E- seeds with the latter being dominated by just a few bacterial groups. Contrary to our expectations, seed bacterial communities were not affected by the aphid herbivory experienced by mother plants. We speculate that the enhanced seed/seedling performance documented for Epichloë-host associations may be explained, at least in part, by the Epichloë-mediated increment in the seed-bacterial diversity, and that this phenomenon may be applicable to other plant-endophyte associations.


2021 ◽  
Author(s):  
Tarikul Islam ◽  
Ben D. Moore ◽  
Scott N. Johnson

<p>In recent years, silicon (Si) has been increasingly linked to biotic stress management in plants including insect herbivory. The effectiveness of Si against chewing insects is now well recognized. Silicification of plant tissues makes them abrasive and tougher, reducing their masticability and digestibility to insect herbivores. This can cause mandibular wearing of chewers and affect their growth and feeding. Although there has been extensive research on the effects of Si on plant defences (i.e. antixenosis and antibiosis), it remains unclear how feeding on silicified plants affects insect defences to their natural enemies. Insect herbivores show morphological and behavioural defences when encountering predators and parasitoids. For example, lepidopteran larvae can regurgitate, twist the body, or even drop off the plants when attacked by natural enemies. Moreover, insects possess innate immunity (physiological defence) against the attackers, demonstrating cellular and humoral responses upon attack. Notably, there could be potential trade-offs between different defence and immunity traits. Given that feeding on Si-rich plants affects insect growth rates, this could impact their relative investment in different defences, thereby making insects more susceptible to their enemies. We are investigating the effects of Si on plant resistance and tolerance to herbivory and its cascading effects on insect defences to their enemies. We have been growing the model grass, <em>Brachypodium distachyon</em>, a high Si-accumulator, hydroponically with or without Si and examining the effects of Si against the global insect herbivore, <em>Helicoverpa armigera</em>. Our preliminary results suggest that Si supplementation enhances plant antixenotic and antibiotic traits and increases plant tolerance to herbivory. We are currently exploring insect defence and immunity traits when fed on silicified versus non-silicified plants. Our study would shed light on the impacts of Si on insects’ susceptibility to biocontrol agents and provide a better understanding of the effects of Si on insect-plant-natural enemy interactions.</p>


2019 ◽  
Vol 99 ◽  
pp. 387-392 ◽  
Author(s):  
Nian-Feng Wan ◽  
Xiang-Yun Ji ◽  
Jian-Yu Deng ◽  
Lars Pødenphant Kiær ◽  
You-Ming Cai ◽  
...  

2016 ◽  
Vol 14 ◽  
pp. 1-7 ◽  
Author(s):  
Xoaquín Moreira ◽  
Luis Abdala-Roberts ◽  
Sergio Rasmann ◽  
Bastien Castagneyrol ◽  
Kailen A Mooney

2020 ◽  
Author(s):  
Cong Van Doan ◽  
Marc Pfander ◽  
Anouk Guyer ◽  
Xi Zhang ◽  
Corina Maurer ◽  
...  

ABSTRACTClimate change will profoundly alter the physiology and ecology of plants, insect herbivores and their natural enemies, resulting in strong effects on multitrophic interactions. Yet, manipulative studies that investigate the direct combined impacts of changes in CO2, temperature, and precipitation on this group of organisms remain rare. Here, we assessed how three day exposure to elevated CO2, increased temperature, and decreased precipitation affect the performance and predation success on species from four major groups of natural enemies of insect herbivores: an entomopathogenic nematode, a wolf spider, a ladybug and a parasitoid wasp. Future climatic conditions (RCP 8.5), entailing a 28% decrease in precipitation, a 3.4°C raise in temperature and a 400 ppm increase in CO2 levels, slightly reduced the survival of entomopathogenic nematodes, but had no effect on the survival of other species. Predation success was not negatively affected in any of the tested species, but was even increased for wolf spiders and entomopathogenic nematodes. Factorial manipulation of climate variables revealed a positive effect of reduced soil moisture on nematode infectivity, but not of increased temperature or elevated CO2. These results suggest that natural enemies of herbivores are well adapted to short term changes in climatic conditions and may not suffer from direct negative effects of future climates. These findings provide mechanistic insights that will inform future efforts to disentangle the complex interplay of biotic and abiotic factors that drive climate-dependent changes in multitrophic interaction networks.


Sign in / Sign up

Export Citation Format

Share Document