High-performance parallel implementations of the NAS kernel benchmarks on the IBM SP2

1995 ◽  
Vol 34 (2) ◽  
pp. 263-272 ◽  
Author(s):  
R. C. Agarwal ◽  
B. Alpern ◽  
L. Carter ◽  
F. G. Gustavson ◽  
D. J. Klepacki ◽  
...  
2021 ◽  
Vol 151 ◽  
pp. 104741
Author(s):  
Bartłomiej Kotyra ◽  
Łukasz Chabudziński ◽  
Przemysław Stpiczyński

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 133822-133831
Author(s):  
H. Rico-Garcia ◽  
Jose-Luis Sanchez-Romero ◽  
A. Jimeno-Morenilla ◽  
H. Migallon-Gomis ◽  
H. Mora-Mora ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Gregorio Bernabé ◽  
Manuel E. Acacio

Many highly parallel algorithms usually generate large volumes of data containing both valid and invalid elements, and high-performance solutions to the stream compaction problem reveal extremely important in such scenarios. Although parallel stream compaction has been extensively studied in GPU-based platforms, and more recently, in the Intel Xeon Phi platform, no study has considered yet its parallelization using a low-cost computing cluster, even when general-purpose single-board computing devices are gaining popularity among the scientific community due to their high performance per $ and watt. In this work, we consider the case of an extremely low-cost cluster composed by four Odroid C2 single-board computers (SDCs), showing that stream compaction can also benefit—important speedups can be obtained—from this kind of platforms. To do so, we derive two parallel implementations for the stream compaction problem using MPI. Then, we evaluate them considering varying number of processes and/or SDCs, as well as different input sizes. In general, we see that unless the number of elements in the stream is too small, the best results are obtained when eight MPI processes are distributed among the four SDCs that conform the cluster. To add value to the obtained results, we also consider the execution of the two parallel implementations for the stream compaction problem on a very high-performance but power-hungry 18-core Intel Xeon E5-2695 v4 multicore processor, obtaining that the Odroid C2 SDC cluster constitutes a much more efficient alternative when both resulting execution time and required energy are taken into account. Finally, we also implement and evaluate a parallel version of the stream split problem to store also the invalid elements after the valid ones. Our implementation shows good scalability on the Odroid C2 SDC cluster and more compensated computation/communication ratio when compared to the stream compaction problem.


Author(s):  
A. V. Crewe ◽  
M. Isaacson ◽  
D. Johnson

A double focusing magnetic spectrometer has been constructed for use with a field emission electron gun scanning microscope in order to study the electron energy loss mechanism in thin specimens. It is of the uniform field sector type with curved pole pieces. The shape of the pole pieces is determined by requiring that all particles be focused to a point at the image slit (point 1). The resultant shape gives perfect focusing in the median plane (Fig. 1) and first order focusing in the vertical plane (Fig. 2).


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
John W. Coleman

In the design engineering of high performance electromagnetic lenses, the direct conversion of electron optical design data into drawings for reliable hardware is oftentimes difficult, especially in terms of how to mount parts to each other, how to tolerance dimensions, and how to specify finishes. An answer to this is in the use of magnetostatic analytics, corresponding to boundary conditions for the optical design. With such models, the magnetostatic force on a test pole along the axis may be examined, and in this way one may obtain priority listings for holding dimensions, relieving stresses, etc..The development of magnetostatic models most easily proceeds from the derivation of scalar potentials of separate geometric elements. These potentials can then be conbined at will because of the superposition characteristic of conservative force fields.


Author(s):  
J W Steeds ◽  
R Vincent

We review the analytical powers which will become more widely available as medium voltage (200-300kV) TEMs with facilities for CBED on a nanometre scale come onto the market. Of course, high performance cold field emission STEMs have now been in operation for about twenty years, but it is only in relatively few laboratories that special modification has permitted the performance of CBED experiments. Most notable amongst these pioneering projects is the work in Arizona by Cowley and Spence and, more recently, that in Cambridge by Rodenburg and McMullan.There are a large number of potential advantages of a high intensity, small diameter, focussed probe. We discuss first the advantages for probes larger than the projected unit cell of the crystal under investigation. In this situation we are able to perform CBED on local regions of good crystallinity. Zone axis patterns often contain information which is very sensitive to thickness changes as small as 5nm. In conventional CBED, with a lOnm source, it is very likely that the information will be degraded by thickness averaging within the illuminated area.


Sign in / Sign up

Export Citation Format

Share Document