scholarly journals Artificial Intelligence Class Activation Mapping of Bone Age

Radiology ◽  
2022 ◽  
Author(s):  
Felipe C. Kitamura ◽  
Ian Pan
2020 ◽  
Vol 24 (01) ◽  
pp. 38-49 ◽  
Author(s):  
Natalia Gorelik ◽  
Jaron Chong ◽  
Dana J. Lin

AbstractArtificial intelligence (AI) has the potential to affect every step of the radiology workflow, but the AI application that has received the most press in recent years is image interpretation, with numerous articles describing how AI can help detect and characterize abnormalities as well as monitor disease response. Many AI-based image interpretation tasks for musculoskeletal (MSK) pathologies have been studied, including the diagnosis of bone tumors, detection of osseous metastases, assessment of bone age, identification of fractures, and detection and grading of osteoarthritis. This article explores the applications of AI for image interpretation of MSK pathologies.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8854
Author(s):  
Fengdan Wang ◽  
Xiao Gu ◽  
Shi Chen ◽  
Yongliang Liu ◽  
Qing Shen ◽  
...  

Objective Bone age (BA) is a crucial indicator for revealing the growth and development of children. This study tested the performance of a fully automated artificial intelligence (AI) system for BA assessment of Chinese children with abnormal growth and development. Materials and Methods A fully automated AI system based on the Greulich and Pyle (GP) method was developed for Chinese children by using 8,000 BA radiographs from five medical centers nationwide in China. Then, a total of 745 cases (360 boys and 385 girls) with abnormal growth and development from another tertiary medical center of north China were consecutively collected between January and October 2018 to test the system. The reference standard was defined as the result interpreted by two experienced reviewers (a radiologist with 10 years and an endocrinologist with 15 years of experience in BA reading) through consensus using the GP atlas. BA accuracy within 1 year, root mean square error (RMSE), mean absolute difference (MAD), and 95% limits of agreement according to the Bland-Altman plot were statistically calculated. Results For Chinese pediatric patients with abnormal growth and development, the accuracy of this new automated AI system within 1 year was 84.60% as compared to the reference standard, with the highest percentage of 89.45% in the 12- to 18-year group. The RMSE, MAD, and 95% limits of agreement of the AI system were 0.76 years, 0.58 years, and −1.547 to 1.428, respectively, according to the Bland-Altman plot. The largest difference between the AI and experts’ BA result was noted for patients of short stature with bone deformities, severe osteomalacia, or different rates of maturation of the carpals and phalanges. Conclusions The developed automated AI system could achieve comparable BA results to experienced reviewers for Chinese children with abnormal growth and development.


2021 ◽  
Author(s):  
Yang Yang ◽  
Xueyan Mei ◽  
Philip Robson ◽  
Brett Marinelli ◽  
Mingqian Huang ◽  
...  

Abstract Most current medical imaging Artificial Intelligence (AI) relies upon transfer learning using convolutional neural networks (CNNs) created using ImageNet, a large database of natural world images, including cats, dogs, and vehicles. Size, diversity, and similarity of the source data determine the success of the transfer learning on the target data. ImageNet is large and diverse, but there is a significant dissimilarity between its natural world images and medical images, leading Cheplygina to pose the question, “Why do we still use images of cats to help Artificial Intelligence interpret CAT scans?”. We present an equally large and diversified database, RadImageNet, consisting of 5 million annotated medical images consisting of CT, MRI, and ultrasound of musculoskeletal, neurologic, oncologic, gastrointestinal, endocrine, and pulmonary pathologies over 450,000 patients. The database is unprecedented in scale and breadth in the medical imaging field, constituting a more appropriate basis for medical imaging transfer learning applications. We found that RadImageNet transfer learning outperformed ImageNet in multiple independent applications, including improvements for bone age prediction from hand and wrist x-rays by 1.75 months (p<0.0001), pneumonia detection in ICU chest x-rays by 0.85% (p<0.0001), ACL tear detection on MRI by 10.72% (p<0.0001), SARS-CoV-2 detection on chest CT by 0.25% (p<0.0001) and hemorrhage detection on head CT by 0.13% (p<0.0001). The results indicate that our pre-trained models that are open-sourced on public domains will be a better starting point for transfer learning in radiologic imaging AI applications, including applications involving medical imaging modalities or anatomies not included in the RadImageNet database.


2021 ◽  
Vol 8 (7) ◽  
pp. 418-422
Author(s):  
Nandu Kumar Thalange ◽  
Elham Elgabaly Moustafa Ahmed ◽  
Ajay Prasanth D'Souza ◽  
Mireille El Bejjani

Objective: Artificial intelligence (AI) is playing an increasing role in patient assessment. AI bone age analysis is such a tool, but its value in Arabic children presenting to an endocrine clinic has not been explored. We compared results from an experienced pediatric radiologist and the AI bone age system, BoneXpert (BX), (Visiana, Denmark) to assess its utility in a cohort of children presenting to the Al Jalila Children’s Specialty Hospital endocrine service. Materials and Methods: We conducted a retrospective chart review of 47 children with growth disorders, initially assessed by a single experienced radiologist and subsequently by BX, to confirm the usefulness of the BX system in our population. The results of the analyses were analysed using a Bland-Altman plot constructed to compare differences between the radiologist’s interpretation and BX across the available range of bone age. Results: Forty-four of the patient x-ray images were analysed by BX. Three X-ray images were rejected by BX due to post-processing artifacts, which prevented computer interpretation. For the remaining 44 X-rays, there was a close correlation between radiologist and BX results (r=0.93; p <0.00001).  Two radiographs were identified with a large discrepancy in the reported bone ages. Blinded, independent re-evaluation of the radiographs showed the original manually interpreted bone age to have been erroneous, with the BX results corresponding closely to the amended bone age. A small positive bias was noted in bone age (+0.39 years) in the BX analyses, relative to manual interpretation. Conclusions: AI bone age analysis was of high utility in Arabic children from UAE presenting to an endocrine clinic, with results highly comparable to an experienced radiologist. In the two cases where a large discrepancy was found, independent re-evaluation showed AI analysis was correct.


Author(s):  
Amaka C. Offiah

AbstractArtificial intelligence (AI) is playing an ever-increasing role in radiology (more so in the adult world than in pediatrics), to the extent that there are unfounded fears it will completely take over the role of the radiologist. In relation to musculoskeletal applications of AI in pediatric radiology, we are far from the time when AI will replace radiologists; even for the commonest application (bone age assessment), AI is more often employed in an AI-assist mode rather than an AI-replace or AI-extend mode. AI for bone age assessment has been in clinical use for more than a decade and is the area in which most research has been conducted. Most other potential indications in children (such as appendicular and vertebral fracture detection) remain largely in the research domain. This article reviews the areas in which AI is most prominent in relation to the pediatric musculoskeletal system, briefly summarizing the current literature and highlighting areas for future research. Pediatric radiologists are encouraged to participate as members of the research teams conducting pediatric radiology artificial intelligence research.


2022 ◽  
Author(s):  
Sarah Lebovitz ◽  
Hila Lifshitz-Assaf ◽  
Natalia Levina

Artificial intelligence (AI) technologies promise to transform how professionals conduct knowledge work by augmenting their capabilities for making professional judgments. We know little, however, about how human-AI augmentation takes place in practice. Yet, gaining this understanding is particularly important when professionals use AI tools to form judgments on critical decisions. We conducted an in-depth field study in a major U.S. hospital where AI tools were used in three departments by diagnostic radiologists making breast cancer, lung cancer, and bone age determinations. The study illustrates the hindering effects of opacity that professionals experienced when using AI tools and explores how these professionals grappled with it in practice. In all three departments, this opacity resulted in professionals experiencing increased uncertainty because AI tool results often diverged from their initial judgment without providing underlying reasoning. Only in one department (of the three) did professionals consistently incorporate AI results into their final judgments, achieving what we call engaged augmentation. These professionals invested in AI interrogation practices—practices enacted by human experts to relate their own knowledge claims to AI knowledge claims. Professionals in the other two departments did not enact such practices and did not incorporate AI inputs into their final decisions, which we call unengaged “augmentation.” Our study unpacks the challenges involved in augmenting professional judgment with powerful, yet opaque, technologies and contributes to literature on AI adoption in knowledge work.


2021 ◽  
Vol 94 (1120) ◽  
pp. 20201119
Author(s):  
Fengdan Wang ◽  
Wangjiu Cidan ◽  
Xiao Gu ◽  
Shi Chen ◽  
Wu Yin ◽  
...  

Objective: To investigate whether bone age (BA) of children living in Tibet Highland could be accurately assessed using a fully automated artificial intelligence (AI) system. Methods: Left hand radiographs of 385 children (300 Tibetan and 85 immigrant Han) aged 4–18 years who presented to the largest medical center of Tibet between September 2013 and November 2019 were consecutively collected. From these radiographs, BA was determined using the Greulich and Pyle (GP) method by experts in a consensus manner; furthermore, BA was estimated by a previously reported artificial intelligence (AI) BA system based on Han children from southern China. The performance of the AI system was compared with that of experts by using statistical analysis. Results: Compared with the experts’ results, the accuracy of the AI system for Tibetan and Han children within 1 year was 84.67 and 89.41%, respectively, and its mean absolute difference (MAD) was 0.65 and 0.56 years, respectively. The discrepancy in hand-wrist bone maturation was the main cause of low accuracy of the system in the 4- to 6-year-old group. Conclusion: The AI BA system developed for Han Chinese children living in flat regions could enable to assess BA accurately in Tibet where medical resources are limited. Advances in knowledge: AI-based BA system may serve as an effective and efficient solution to assess BA in Tibet.


Sign in / Sign up

Export Citation Format

Share Document