Characterization of Interface State Density of SiO2/SiC (000-1) Based on Oxygen Concentration at the Interface during Thermal Oxidation

2016 ◽  
Vol 75 (12) ◽  
pp. 201-206
Author(s):  
R. Hasunuma ◽  
K. Hanasato ◽  
K. Yamabe
2014 ◽  
Vol 778-780 ◽  
pp. 631-634 ◽  
Author(s):  
Yoshiyuki Akahane ◽  
Takuo Kano ◽  
Kyosuke Kimura ◽  
Hiroki Komatsu ◽  
Yukimune Watanabe ◽  
...  

A nitride layer was formed on a SiC surface by plasma nitridation using pure nitrogen as the reaction gas at the temperature from 800°C to 1400°C. The surface was characterized by XPS. The XPS measurement showed that an oxinitride layer was formed on the SiC surface by the plasma nitridation. The high process temperature seemed to be effective to activate the niridation reaction. A SiO2film was deposited on the nitridation layer to form SiO2/nitride/SiC structure. The interface state density of the SiO2/nitride/SiC structure was lower than that of the SiO2/SiC structure. This suggested that the nitridation was effective to improve the interface property.


2021 ◽  
Vol 314 ◽  
pp. 95-98
Author(s):  
Tomoki Hirano ◽  
Kenya Nishio ◽  
Takashi Fukatani ◽  
Suguru Saito ◽  
Yoshiya Hagimoto ◽  
...  

In this work, we characterized the wet chemical atomic layer etching of an InGaAs surface by using various surface analysis methods. For this etching process, H2O2 was used to create a self-limiting oxide layer. Oxide removal was studied for both HCl and NH4OH solutions. Less In oxide tended to remain after the HCl treatment than after the NH4OH treatment, so the combination of H2O2 and HCl is suitable for wet chemical atomic layer etching. In addition, we found that repetition of this etching process does not impact on the oxide amount, surface roughness, and interface state density. Thus, nanoscale etching of InGaAs with no impact on the surface condition is possible with this method.


2016 ◽  
Vol 858 ◽  
pp. 663-666
Author(s):  
Marilena Vivona ◽  
Patrick Fiorenza ◽  
Tomasz Sledziewski ◽  
Alexandra Gkanatsiou ◽  
Michael Krieger ◽  
...  

In this work, the electrical properties of SiO2/SiC interfaces onto a 2°-off axis 4H-SiC layer were studied and validated through the processing and characterization of metal-oxide-semiconductor (MOS) capacitors. The electrical analyses on the MOS capacitors gave an interface state density in the low 1×1012 eV-1cm-2 range, which results comparable to the standard 4°-off-axis 4H-SiC, currently used for device fabrication. From Fowler-Nordheim analysis and breakdown measurements, a barrier height of 2.9 eV and an oxide breakdown of 10.3 MV/cm were determined. The results demonstrate the maturity of the 2°-off axis material and pave the way for the fabrication of 4H-SiC MOSFET devices on this misorientation angle.


2011 ◽  
Vol 276 ◽  
pp. 87-93
Author(s):  
Y.Y. Gomeniuk ◽  
Y.V. Gomeniuk ◽  
A. Nazarov ◽  
P.K. Hurley ◽  
Karim Cherkaoui ◽  
...  

The paper presents the results of electrical characterization of MOS capacitors and SOI MOSFETs with novel high-κ LaLuO3 dielectric as a gate oxide. The energy distribution of interface state density at LaLuO3/Si interface is presented and typical maxima of 1.2×1011 eV–1cm–2 was found at about 0.25 eV from the silicon valence band. The output and transfer characteristics of the n- and p-MOSFET (channel length and width were 1 µm and 50 µm, respectively) are presented. The front channel mobility appeared to be 126 cm2V–1s–1 and 70 cm2V–1s–1 for n- and p-MOSFET, respectively. The front channel threshold voltages as well as the density of states at the back interface are presented.


2009 ◽  
Vol 615-617 ◽  
pp. 789-792
Author(s):  
Masato Noborio ◽  
Jun Suda ◽  
Tsunenobu Kimoto

P-channel MOSFETs have been fabricated on 4H-SiC (0001) face as well as on 4H-SiC (03-38) and (11-20) faces. The gate oxides were formed by thermal oxidation in dry N2O ambient, which is widely accepted to improve the performance of n-channel SiC MOSFETs. The p-channel SiC MOSFETs with N2O-grown oxides on 4H-SiC (0001), (03-38), and (11-20) faces show a channel mobility of 7 cm2/Vs, 11 cm2/Vs, and 17 cm2/Vs, respectively. From the quasi-static C-V curves measured by using gate-controlled diodes, the interface state density was calculated by an original method. The interface state density was the lowest at the SiO2/4H-SiC (03-38) interface (about 1x1012 cm-2eV-1 at EV + 0.2 eV). The authors have applied deposited oxides to the 4H-SiC p-channel MOSFETs. The (0001), (03-38), and (11-20) MOSFETs with deposited oxides exhibit a channel mobility of 10 cm2/Vs, 13 cm2/Vs, and 17 cm2/Vs, respectively. The deposited oxides are one of effective approaches to improve both n-channel and p-channel 4H-SiC MOS devices.


2014 ◽  
Vol 54 (4) ◽  
pp. 725-729 ◽  
Author(s):  
Chunmeng Dou ◽  
Tomoya Shoji ◽  
Kazuhiro Nakajima ◽  
Kuniyuki Kakushima ◽  
Parhat Ahmet ◽  
...  

2017 ◽  
Vol 34 (9) ◽  
pp. 097301 ◽  
Author(s):  
Zhi-Fu Zhu ◽  
He-Qiu Zhang ◽  
Hong-Wei Liang ◽  
Xin-Cun Peng ◽  
Ji-Jun Zou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document