scholarly journals Preparation and Characterization of Nitridation Layer on 4H SiC (0001) Surface by Direct Plasma Nitridation

2014 ◽  
Vol 778-780 ◽  
pp. 631-634 ◽  
Author(s):  
Yoshiyuki Akahane ◽  
Takuo Kano ◽  
Kyosuke Kimura ◽  
Hiroki Komatsu ◽  
Yukimune Watanabe ◽  
...  

A nitride layer was formed on a SiC surface by plasma nitridation using pure nitrogen as the reaction gas at the temperature from 800°C to 1400°C. The surface was characterized by XPS. The XPS measurement showed that an oxinitride layer was formed on the SiC surface by the plasma nitridation. The high process temperature seemed to be effective to activate the niridation reaction. A SiO2film was deposited on the nitridation layer to form SiO2/nitride/SiC structure. The interface state density of the SiO2/nitride/SiC structure was lower than that of the SiO2/SiC structure. This suggested that the nitridation was effective to improve the interface property.

2021 ◽  
Vol 314 ◽  
pp. 95-98
Author(s):  
Tomoki Hirano ◽  
Kenya Nishio ◽  
Takashi Fukatani ◽  
Suguru Saito ◽  
Yoshiya Hagimoto ◽  
...  

In this work, we characterized the wet chemical atomic layer etching of an InGaAs surface by using various surface analysis methods. For this etching process, H2O2 was used to create a self-limiting oxide layer. Oxide removal was studied for both HCl and NH4OH solutions. Less In oxide tended to remain after the HCl treatment than after the NH4OH treatment, so the combination of H2O2 and HCl is suitable for wet chemical atomic layer etching. In addition, we found that repetition of this etching process does not impact on the oxide amount, surface roughness, and interface state density. Thus, nanoscale etching of InGaAs with no impact on the surface condition is possible with this method.


2016 ◽  
Vol 858 ◽  
pp. 663-666
Author(s):  
Marilena Vivona ◽  
Patrick Fiorenza ◽  
Tomasz Sledziewski ◽  
Alexandra Gkanatsiou ◽  
Michael Krieger ◽  
...  

In this work, the electrical properties of SiO2/SiC interfaces onto a 2°-off axis 4H-SiC layer were studied and validated through the processing and characterization of metal-oxide-semiconductor (MOS) capacitors. The electrical analyses on the MOS capacitors gave an interface state density in the low 1×1012 eV-1cm-2 range, which results comparable to the standard 4°-off-axis 4H-SiC, currently used for device fabrication. From Fowler-Nordheim analysis and breakdown measurements, a barrier height of 2.9 eV and an oxide breakdown of 10.3 MV/cm were determined. The results demonstrate the maturity of the 2°-off axis material and pave the way for the fabrication of 4H-SiC MOSFET devices on this misorientation angle.


2011 ◽  
Vol 276 ◽  
pp. 87-93
Author(s):  
Y.Y. Gomeniuk ◽  
Y.V. Gomeniuk ◽  
A. Nazarov ◽  
P.K. Hurley ◽  
Karim Cherkaoui ◽  
...  

The paper presents the results of electrical characterization of MOS capacitors and SOI MOSFETs with novel high-κ LaLuO3 dielectric as a gate oxide. The energy distribution of interface state density at LaLuO3/Si interface is presented and typical maxima of 1.2×1011 eV–1cm–2 was found at about 0.25 eV from the silicon valence band. The output and transfer characteristics of the n- and p-MOSFET (channel length and width were 1 µm and 50 µm, respectively) are presented. The front channel mobility appeared to be 126 cm2V–1s–1 and 70 cm2V–1s–1 for n- and p-MOSFET, respectively. The front channel threshold voltages as well as the density of states at the back interface are presented.


2001 ◽  
Vol 670 ◽  
Author(s):  
Mark A. Shriver ◽  
Ann M. Gabrys ◽  
T. K. Higman ◽  
S. A. Campbell

ABSTRACTCurrent high permittivity material deposition techniques produce a low permittivity oxide interfacial layer consequently increasing the equivalent oxide thickness. This interfacial oxide layer can be prevented by initially growing a thin nitride layer to act as a diffusion barrier. The interfacial nitride layer must also have low interface state densities comparable to state-of-the-art SiO2 insulators in order to be suitable for MOSFETs. The nitride layer used in this study was formed by thermal nitridation in a UHV system, with the subsequent high permittivity deposition done in an adjoining system. After forming capacitors from these films, capacitance vs. voltage (C-V) techniques were used to determine the interface state density and equivalent oxide thickness of the films. Gate stack films were produced on Si(100) and Si(111) and the results are compared. Gate stacks on Si(100) show a slight increase in stretchout in the high frequency C-V curves for both n-type and p-type samples. Initial data suggests that Si(111) has a lower interface state density than the Si(100) gate stacks. This may be attributed to the Si3N4layer on Si(111) being epitaxial nitride.


2012 ◽  
Vol 717-720 ◽  
pp. 725-728 ◽  
Author(s):  
Takashi Sakai ◽  
Mitsunori Hemmi ◽  
Yusuke Murata ◽  
Tomohiko Yamakami ◽  
Rinpei Hayashibe ◽  
...  

A nitride layer was formed on a SiC surface by direct nitridation in pure N2 or in NH3 diluted with N2. The SiO2 layer was deposited by the thermal decomposition of tetraethylorthosilicate (TEOS) on the nitride layer to form an MIS diode. The XPS analysis showed that the nitride layer was oxidized during the deposition process of SiO2. The direct nitridation was effective to reduce the interface state density between the insulating layer and 4H-SiC


2014 ◽  
Vol 54 (4) ◽  
pp. 725-729 ◽  
Author(s):  
Chunmeng Dou ◽  
Tomoya Shoji ◽  
Kazuhiro Nakajima ◽  
Kuniyuki Kakushima ◽  
Parhat Ahmet ◽  
...  

2017 ◽  
Vol 34 (9) ◽  
pp. 097301 ◽  
Author(s):  
Zhi-Fu Zhu ◽  
He-Qiu Zhang ◽  
Hong-Wei Liang ◽  
Xin-Cun Peng ◽  
Ji-Jun Zou ◽  
...  

2014 ◽  
Vol 778-780 ◽  
pp. 418-423 ◽  
Author(s):  
Hironori Yoshioka ◽  
Takashi Nakamura ◽  
Junji Senzaki ◽  
Atsushi Shimozato ◽  
Yasunori Tanaka ◽  
...  

We focused on the inability of the common high-low method to detect very fast interface states, and developed methods to evaluate such states (CψS method). We have investigated correlation between the interface state density (DIT) evaluated by the CψS method and MOSFET performance, and found that the DIT(CψS) was well reflected in MOSFET performance. Very fast interface states which are generated by nitridation restricted the improvement of subthreshold slope and field-effect mobility.


2013 ◽  
Vol 740-742 ◽  
pp. 805-808 ◽  
Author(s):  
Mitsunori Hemmi ◽  
Takashi Sakai ◽  
Tomohiko Yamakami ◽  
Rinpei Hayashibe ◽  
Kiichi Kamimura

The SiO2 layer was deposited on the 4H-SiC Si face by the thermal decomposition of tetraethylorthosilicate(TEOS) in N2 atmosphere to from MIS diodes. The post deposition annealing was effective to improve the interface properties. The interface state density of the deposited SiO2/SiC MIS structure was estimated to be the order of 1011 cm-2eV-1 by Terman method. The direct nitridation of SiC surface prior to the deposition of the SiO2 layer was effective to reduce the interface state density.


Sign in / Sign up

Export Citation Format

Share Document