Effect of Surface Iron on Photoconductivity Carrier Recombination Lifetime of p‐Type Silicon

1998 ◽  
Vol 145 (5) ◽  
pp. 1724-1729 ◽  
Author(s):  
Heungsoo Park ◽  
C. R. Helms ◽  
Daehong Ko
2013 ◽  
Vol 440 ◽  
pp. 82-87 ◽  
Author(s):  
Mohammad Jahangir Alam ◽  
Mohammad Ziaur Rahman

A comparative study has been made to analyze the impact of interstitial iron in minority carrier lifetime of multicrystalline silicon (mc-Si). It is shown that iron plays a negative role and is considered very detrimental for minority carrier recombination lifetime. The analytical results of this study are aligned with the spatially resolved imaging analysis of iron rich mc-Si.


1990 ◽  
Vol 137 (9) ◽  
pp. 2966-2973 ◽  
Author(s):  
P. de Mierry ◽  
D. Ballutaud ◽  
M. Aucouturier ◽  
A. Etcheberry

1983 ◽  
Vol 25 ◽  
Author(s):  
O. Paz ◽  
F. D. Auret

ABSTRACTDefects introduced in p-type silicon during RF sputter deposition of Ti-W and electron-beam evaporation of hafnium were investigated using I-V, deep level transient spectroscopy and electron-beam induced current techniques. DLTS measurements indicate the presence of several deposition and evaporation induced defect states. H(0.35) at EV + .35 eV and H(0.38) were the most prominent defects. Minority carrier diffusion length results taken after annealing showed that in the case of the Hf contacts the damage was annealed out while in the case of Ti-W it was not. These differences in carrier recombination are traced to the concentration of H(0.35). Sputtering or evaporation induced damage also increased the barrier height. This observed increase was modeled assuming the introduction of donor-like defects.


AIP Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 085005
Author(s):  
Kevin Lauer ◽  
Geert Brokmann ◽  
Mario Bähr ◽  
Thomas Ortlepp
Keyword(s):  

1981 ◽  
Vol 5 ◽  
Author(s):  
L. J. Cheng ◽  
C. M. Shyu

ABSTRACTWe have studied the photoconductivity of grain boundaries in p–type silicon. The result demonstrates the applicability of the technique for the measurement of minority carrier recombination velocity at the grain boundary. The experimental data are consistent with the thought that the recombination velocity increases with the boundary state density and light intensity.


Sign in / Sign up

Export Citation Format

Share Document