Structure Property Relationships: Key to Solid‐State Science and Technology

1975 ◽  
Vol 122 (9) ◽  
pp. 287C-300C ◽  
Author(s):  
Harry C. Gatos
IUCrJ ◽  
2015 ◽  
Vol 2 (6) ◽  
pp. 653-660 ◽  
Author(s):  
Manish Kumar Mishra ◽  
Arijit Mukherjee ◽  
Upadrasta Ramamurty ◽  
Gautam R. Desiraju

A new monoclinic polymorph, form II (P21/c,Z= 4), has been isolated for 3,4-dimethoxycinnamic acid (DMCA). Its solid-state 2 + 2 photoreaction to the corresponding α-truxillic acid is different from that of the first polymorph, the triclinic form I (P\bar 1,Z= 4) that was reported in 1984. The crystal structures of the two forms are rather different. The two polymorphs also exhibit different photomechanical properties. Form I exhibits photosalient behavior but this effect is absent in form II. These properties can be explained on the basis of the crystal packing in the two forms. The nanoindentation technique is used to shed further insights into these structure−property relationships. A faster photoreaction in form I and a higher yield in form II are rationalized on the basis of the mechanical properties of the individual crystal forms. It is suggested that both Schmidt-type and Kaupp-type topochemistry are applicable for the solid-statetrans-cinnamic acid photodimerization reaction. Form I of DMCA is more plastic and seems to react under Kaupp-type conditions with maximum molecular movements. Form II is more brittle, and its interlocked structure seems to favor Schmidt-type topochemistry with minimum molecular movement.


2005 ◽  
Vol 221 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Vitaly M. Karaman ◽  
Valery P. Privalko ◽  
Eleonora G. Privalko ◽  
Bjorn Lehmann ◽  
Klaus Friedrich

2019 ◽  
Author(s):  
Michael Dommett ◽  
Miguel Rivera ◽  
Matthew T. H. Smith ◽  
Rachel Crespo Otero

Aggregation induced emission offers a route to the development of emissive technologies based on solely organic systems. However, maximising fluorescence quantum efficiencies (QE) is a formidable challenge in attaining first-principles materials design, due to the interplay between the electronic structure of the chromophore and the molecular crystal. The identification of radiative and nonradiative channels, and how these are affected by aggregation, can rationalise the emissive properties of materials and aid in the design of yet more efficient fluorophores. In the current work, we examine the mechanism behind aggregation induced emission in two related families of compounds with lasing properties, which undergo excited state intramolecular proton transfer (ESIPT). We systematically investigate competing excited state decay channels in a total of eleven crystals to evaluate the factors needed for efficient ESIPT fluorophores, aided by a full evaluation of the crystal structures, exciton coupling, and exciton hopping rates. We show that in addition to the restriction of nonradiative pathways, an efficient ESIPT is essential to maximise the QE in the solid state. This extensive study of structure-property relationships for fluorophores based on the ESIPT mechanism bridges the understanding of molecular photophysics with crystal structure, accelerating the development of highly efficient solid state emitters.


Author(s):  
Oleh Stetsiuk ◽  
Patricia Bolle ◽  
Marie Cordier ◽  
Julien Boixel ◽  
Rémi Dessapt

Five new highly photochromic hybrid organic-inorganic materials were successfully prepared by supramolecular assembly of normal (1+) and mixed (2+) cationic dithienylethenes (DTEs) and polyoxometalates (POMs) units. Single-crystal X-ray diffraction studies...


2019 ◽  
Vol 15 ◽  
pp. 1379-1393
Author(s):  
Pierre-Olivier Schwartz ◽  
Sebastian Förtsch ◽  
Astrid Vogt ◽  
Elena Mena-Osteritz ◽  
Peter Bäuerle

A new novel family of tricyclic sulfur and/or selenium-containing heterotriacenes 2–4 with an increasing number of selenium (Se) atoms is presented. The heterotriacene derivatives were synthesized in multistep synthetic routes and the crucial cyclization steps to the stable and soluble fused systems were achieved by copper-catalyzed C–S and C–Se coupling/cyclization reactions. Structures and packing motifs in the solid state were elucidated by single crystal X-ray analysis and XRD powder measurements. Comparison of the optoelectronic properties provides interesting structure–property relationships and gives valuable insights into the role of heteroatoms within the series of the heterotriacenes. Electrooxidative polymerization led to the corresponding poly(heterotriacene)s P2–P4.


Sign in / Sign up

Export Citation Format

Share Document