Fabrication of Titanium Nitride and Molybdenum Nitride for Supercapacitor Electrode Application

2019 ◽  
Vol 35 (32) ◽  
pp. 133-139 ◽  
Author(s):  
Yen-Jui (Bernie) Ting ◽  
Keryn Lian ◽  
Nazir Kherani
NANO ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. 2050152 ◽  
Author(s):  
Yibing Xie

The sodium ion pre-intercalation manganese dioxide (Na[Formula: see text]MnO[Formula: see text] is supported on titanium nitride (TiN) substrate to form electroactive Na[Formula: see text]MnO2/TiN electrode through an electrodeposition process in Mn(CH3COOH)2/Na2SO4 precursors with high Mn/Na ratio. MnO2 has a tiled leaf-like structure with a wrinkling morphology. Na[Formula: see text]MnO2 has a cross-linking nanorod structure with a nanoporous morphology, which is beneficial for electrolyte ion diffusion. The density functional theory (DFT) calculation results indicate that Na[Formula: see text]MnO2 reveals the enhanced density of states (DOS) and the lowered band gap than MnO2, which is consistent with higher cyclic voltammetry current response due to superior electroactivity of Na[Formula: see text]MnO2. The Faradaic process involves Na[Formula: see text] adsorption/desorption on the surface of MnO2 by contributing to electrochemical capacitance and Na[Formula: see text] intercalation/deintercalation on the deep interlayer of pre-intercalation Na[Formula: see text]MnO2 by contributing to pseudocapacitance. Concerning the electrolyte ion size effect, both MnO2/TiN and Na[Formula: see text]MnO2/TiN electrodes have higher capacitive performance in Li2SO4 electrolyte than that in Na2SO4 and K2SO4 electrolyte due to more feasible Li[Formula: see text] diffusion. When MnO2 is converted into Na[Formula: see text]MnO2, the capacitance at 2.5 mA cm[Formula: see text] increases from 351.3 mF cm[Formula: see text] to 405.6 mF cm[Formula: see text] in Na2SO4 electrolyte and from 376.3 mF cm[Formula: see text] to 465.1 mF cm[Formula: see text] in Li2SO4 electrolyte. The conductive TiN substrate leads to high rate capacity retention ratio of 50.7% for MnO2/TiN and 49.5% for Na[Formula: see text]MnO2/TiN when current density increases from 0.5 mA cm[Formula: see text] to 5 mA cm[Formula: see text]. So, Na[Formula: see text]MnO2/TiN with sodium ion pre-intercalation exhibits the improved capacitive performance in Li2SO4 electrolyte to act well as the promising supercapacitor electrode.


2021 ◽  
Vol 39 (1) ◽  
pp. 012407
Author(s):  
Md. Istiaque Chowdhury ◽  
Mark Sowa ◽  
Alexander C. Kozen ◽  
Brandon A. Krick ◽  
Jewel Haik ◽  
...  

Author(s):  
J. Liu ◽  
N. D. Theodore ◽  
D. Adams ◽  
S. Russell ◽  
T. L. Alford ◽  
...  

Copper-based metallization has recently attracted extensive research because of its potential application in ultra-large-scale integration (ULSI) of semiconductor devices. The feasibility of copper metallization is, however, limited due to its thermal stability issues. In order to utilize copper in metallization systems diffusion barriers such as titanium nitride and other refractory materials, have been employed to enhance the thermal stability of copper. Titanium nitride layers can be formed by annealing Cu(Ti) alloy film evaporated on thermally grown SiO2 substrates in an ammonia ambient. We report here the microstructural evolution of Cu(Ti)/SiO2 layers during annealing in NH3 flowing ambient.The Cu(Ti) films used in this experiment were prepared by electron beam evaporation onto thermally grown SiO2 substrates. The nominal composition of the Cu(Ti) alloy was Cu73Ti27. Thermal treatments were conducted in NH3 flowing ambient for 30 minutes at temperatures ranging from 450°C to 650°C. Cross-section TEM specimens were prepared by the standard procedure.


1989 ◽  
Vol 50 (C7) ◽  
pp. C7-169-C7-173
Author(s):  
R.C BUSCHERT ◽  
P. N. GIBSON ◽  
W. GISSLER ◽  
J. HAUPT ◽  
T. A. CRABB
Keyword(s):  

1980 ◽  
Vol 41 (5) ◽  
pp. 558-566
Author(s):  
O. Yu Elagina ◽  
◽  
D.O. Kolbas ◽  
A.G. Buklakov ◽  
N. Derr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document