The Role of Metallic Protection Layers in Extending the Stability of Nasicon Electrolytes for Solid-State Batteries

Author(s):  
Ieuan Seymour ◽  
Ainara Aguadero

All-solid-state batteries containing a solid electrolyte and a lithium (Li) or sodium (Na) metal anode are a promising solution to simultaneously increase the energy density and safety of rechargeable batteries....


Author(s):  
François Larouche ◽  
George P. Demopoulos ◽  
Kamyab Amouzegar ◽  
Patrick Bouchard ◽  
Karim Zaghib

2020 ◽  
Vol 7 (20) ◽  
pp. 3953-3960
Author(s):  
Florian Strauss ◽  
Jun Hao Teo ◽  
Jürgen Janek ◽  
Torsten Brezesinski

A glassy 1.5Li2S–0.5P2S5–LiI solid electrolyte enables stable cycling of high-loading all-solid-state battery cells with an NCM622 cathode and a LTO anode.


2018 ◽  
Vol 11 (7) ◽  
pp. 1803-1810 ◽  
Author(s):  
Bingbin Wu ◽  
Shanyu Wang ◽  
Joshua Lochala ◽  
David Desrochers ◽  
Bo Liu ◽  
...  

The fundamental role of the solid electrolyte interphase (SEI) layer in preventing dendritic Li growth has been investigated in solid-state batteries.


Author(s):  
A. Meléndez-López ◽  
M. F. García-Hurtado ◽  
J. Cruz-Castañeda ◽  
A. Negrón-Mendoza ◽  
S. Ramos-Bernal ◽  
...  

Aspartic acid is an amino acid present in the modern proteins, however, is considered a primitive amino acid hence its importance in prebiotic chemistry experiments studies. In some works of prebiotic chemistry have been studied the synthesis and the stability of organic matter under high energy sources, and the role of clays has been highlighted due to clays that can affect the reaction mechanisms in the radiolytic processes. The present work is focused on the study of the role of Namontmorillonite in the gamma radiolysis processes of L-aspartic acid. Gamma radiolysis processes were carried out in three different systems a) L-aspartic acid in aqueous solution; b) L-aspartic acid in solid-state; and c) L-aspartic acid adsorbed into Na-montmorillonite. L-aspartic acid was analyzed by high-performance liquid chromatography−electrospray ionization−mass spectrometry (HPLCESI-MS). The results showed that the decomposition of L-aspartic acid considerably decreased in the presence of clay thus highlighting the protector role of clays and favors the stability of organic matter even under the possible high energy conditions of primitive environments. The principal product ofgamma radiolysis of L-aspartic acid was succinic acid produced by deamination reaction. On the other hand, when aspartic acid was irradiated in solid-state the main product was the L-aspartic acid dimer. Both radiolysis products are important for chemical evolution processes for L-aspartic acid in primitive environments.


2020 ◽  
pp. 2000241
Author(s):  
Lucy Smith ◽  
Taofeeq Ibn‐Mohammed ◽  
Dolores Astudillo ◽  
Solomon Brown ◽  
Ian M. Reaney ◽  
...  

2020 ◽  
Vol 4 (5) ◽  
pp. 2229-2235 ◽  
Author(s):  
Deep A. Jokhakar ◽  
Dhanya Puthusseri ◽  
Palanisamy Manikandan ◽  
Zheng Li ◽  
Jooho Moon ◽  
...  

Enhancing the ionic conductivity and thermal stability of solid electrolytes is crucial for the development of all-solid-state batteries.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2024
Author(s):  
Federica Aiello ◽  
Sofia Masi

Although it has been exploited since the late 1900s to study hybrid perovskite materials, nuclear magnetic resonance (NMR) spectroscopy has only recently received extraordinary research attention in this field. This very powerful technique allows the study of the physico-chemical and structural properties of molecules by observing the quantum mechanical magnetic properties of an atomic nucleus, in solution as well as in solid state. Its versatility makes it a promising technique either for the atomic and molecular characterization of perovskite precursors in colloidal solution or for the study of the geometry and phase transitions of the obtained perovskite crystals, commonly used as a reference material compared with thin films prepared for applications in optoelectronic devices. This review will explore beyond the current focus on the stability of perovskites (3D in bulk and nanocrystals) investigated via NMR spectroscopy, in order to highlight the chemical flexibility of perovskites and the role of interactions for thermodynamic and moisture stabilization. The exceptional potential of the vast NMR tool set in perovskite structural characterization will be discussed, aimed at choosing the most stable material for optoelectronic applications. The concept of a double-sided characterization in solution and in solid state, in which the organic and inorganic structural components provide unique interactions with each other and with the external components (solvents, additives, etc.), for material solutions processed in thin films, denotes a significant contemporary target.


Sign in / Sign up

Export Citation Format

Share Document