(Invited) Electrocatalysts for Water-Splitting: Design, Development, and Integration Into Devices for Water Electrolysis and Solar Photoelectrochemical (PEC) Hydrogen Production

2021 ◽  
Vol MA2021-02 (44) ◽  
pp. 1325-1325
Author(s):  
Thomas F Jaramillo
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shan Wang ◽  
Aolin Lu ◽  
Chuan-Jian Zhong

AbstractAs a promising substitute for fossil fuels, hydrogen has emerged as a clean and renewable energy. A key challenge is the efficient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efficient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active, stable, and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use, which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity, stability, and efficiency. This will be followed by outlining current knowledge on the two half-cell reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be discussed. New strategies and insights in exploring the synergistic structure, morphology, composition, and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally, future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efficient production of hydrogen from water splitting electrolysis will also be outlined.


Author(s):  
Roxanne Garland ◽  
Sara Dillich ◽  
Eric Miller ◽  
Kristine Babick ◽  
Kenneth Weil

The goal of the US Department of Energy (DOE) hydrogen production portfolio is to research and develop low-cost, highly efficient and environmentally friendly production technologies based on diverse, domestic resources. The DOE Hydrogen Program integrates basic and applied research, as well as technology development and demonstration, to adequately address a diverse range of technologies and feedstocks. The program encompasses a broad spectrum of coordinated activities within the DOE Offices of Energy Efficiency and Renewable Energy (EERE), Nuclear Energy (NE), Fossil Energy (FE), and Science (SC). Hydrogen can be produced in small, medium, and larger scale facilities, with small-scale distributed facilities producing from 100 to 1,500 kilograms (kg) of hydrogen per day at fueling stations, and medium-scale (also known as semi-central or city-gate) facilities producing from 1,500 to 50,000 kg per day on the outskirts of cities. The largest central facilities would produce more than 50,000 kg of hydrogen per day. Specific technologies currently under program development for distributed hydrogen production include bio-derived renewable liquids and water electrolysis. Centralized renewable production pathways under development include water electrolysis integrated with renewable power (e.g., wind, solar, hydroelectric, or geothermal), biomass gasification, solar-driven high-temperature thermochemical water splitting, direct photoelectrochemical water splitting, and biological production methods using algal/bacterial processes. To facilitate commercialization of hydrogen production via these various technology pathways in the near and long terms, a “Hydrogen Production Roadmap” has been developed which identifies the key challenges and high-priority research and development needs associated with each technology. The aim is to foster research that will lead to hydrogen production with near-zero net greenhouse gas emissions, using renewable energy sources, nuclear energy, and/or coal (with carbon capture and storage). This paper describes the research and development needs and activities by various DOE offices to address the key challenges in the portfolio of hydrogen production technologies.


Author(s):  
Qianli Ma ◽  
Huihui Jin ◽  
Fan-Jie Xia ◽  
Hanwen Xu ◽  
Jiawei Zhu ◽  
...  

High cost performance catalysts are urgently required for hydrogen production from electrochemical water electrolysis by the hydrogen evolution reaction (HER) and slow oxygen evolution reaction (OER). Herein, by means of...


RSC Advances ◽  
2019 ◽  
Vol 9 (60) ◽  
pp. 34995-35002 ◽  
Author(s):  
Qingyou Huang ◽  
Yang Cao ◽  
Xiaohong Wang ◽  
Jinchun Tu ◽  
Qianfeng Xia ◽  
...  

(a) LSV of overall water splitting for the respective component at a scan rate of 5 mV s−1. (b) Chronopotentiometry curve under a constant current density of 20 mA cm−2. Inset: photographic image of two-electrode water electrolysis device.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 810
Author(s):  
Mohd Fadhzir Ahmad Kamaroddin ◽  
Nordin Sabli ◽  
Tuan Amran Tuan Abdullah ◽  
Shamsul Izhar Siajam ◽  
Luqman Chuah Abdullah ◽  
...  

Hydrogen is a zero-carbon footprint energy source with high energy density that could be the basis of future energy systems. Membrane-based water electrolysis is one means by which to produce high-purity and sustainable hydrogen. It is important that the scientific community focus on developing electrolytic hydrogen systems which match available energy sources. In this review, various types of water splitting technologies, and membrane selection for electrolyzers, are discussed. We highlight the basic principles, recent studies, and achievements in membrane-based electrolysis for hydrogen production. Previously, the NafionTM membrane was the gold standard for PEM electrolyzers, but today, cheaper and more effective membranes are favored. In this paper, CuCl–HCl electrolysis and its operating parameters are summarized. Additionally, a summary is presented of hydrogen production by water splitting, including a discussion of the advantages, disadvantages, and efficiencies of the relevant technologies. Nonetheless, the development of cost-effective and efficient hydrogen production technologies requires a significant amount of study, especially in terms of optimizing the operation parameters affecting the hydrogen output. Therefore, herein we address the challenges, prospects, and future trends in this field of research, and make critical suggestions regarding the implementation of comprehensive membrane-based electrolytic systems.


2020 ◽  
Vol 16 ◽  
Author(s):  
Yuxue Wei ◽  
Honglin Qin ◽  
Jinxin Deng ◽  
Xiaomeng Cheng ◽  
Mengdie Cai ◽  
...  

Introduction: Solar-driven photocatalytic hydrogen production from water splitting is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. In this review, recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. In particular, the factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Background: Photocatalytic hydrogen evolution from water splitting using photocatalyst semiconductors is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. Methods: This review summarizes the recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation. Results: Recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. The factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Conclusion: The state-of-the-art CdS for producing hydrogen from photocatalytic water splitting under visible light is discussed. The future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are also described.


2020 ◽  
Vol 16 ◽  
Author(s):  
Chanchan Fan ◽  
Peng Zhang ◽  
Ranran Wang ◽  
Yezhu Xu ◽  
Xingrui Sun ◽  
...  

: A new kind of two-dimensional (2D) materials MXene (early transition metal carbides, nitrides and carbonitrides) is obtained by selective etching the A element from the MAX phases. MXene exhibits both the metallic conductivity and the hydrophilic nature due to its metal layer structure and hydroxyl or oxygen terminated surfaces. This review provides an overview of the MXene used in the electrolytes and electrodes for the fuel cells and water splitting. MXene with functional groups termination could construct ion channels that significantly benefits to the ion conductivity through the electrolyte. The metal supported by MXene interaction offers electronic, compositional, and geometric effects that could enhance the catalytic activity and stability. MXene have already shown promising performance for fuel cells and water electrolysis. Herein, the etching and intercalation methods of MXene in recent years are summarized. The applications of MXene for fuel cells electrolyte, catalyst and water splitting catalyst are revealed to provide more brief idea for MXene used as new energy materials.


2021 ◽  
Vol 1034 (1) ◽  
pp. 012075
Author(s):  
Purnami ◽  
ING. Wardana ◽  
Sudjito ◽  
Denny Widhiyanuriyawan ◽  
Nurkholis Hamidi

Nanoscale ◽  
2021 ◽  
Author(s):  
Dongxue Yao ◽  
Lingling Gu ◽  
Bin Zuo ◽  
Shuo Weng ◽  
Shengwei Deng ◽  
...  

The technology of electrolyzing water to prepare high-purity hydrogen is an important field in today's energy development. However, how to prepare efficient, stable, and inexpensive hydrogen production technology from electrolyzed...


Sign in / Sign up

Export Citation Format

Share Document