scholarly journals Membrane-Based Electrolysis for Hydrogen Production: A Review

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 810
Author(s):  
Mohd Fadhzir Ahmad Kamaroddin ◽  
Nordin Sabli ◽  
Tuan Amran Tuan Abdullah ◽  
Shamsul Izhar Siajam ◽  
Luqman Chuah Abdullah ◽  
...  

Hydrogen is a zero-carbon footprint energy source with high energy density that could be the basis of future energy systems. Membrane-based water electrolysis is one means by which to produce high-purity and sustainable hydrogen. It is important that the scientific community focus on developing electrolytic hydrogen systems which match available energy sources. In this review, various types of water splitting technologies, and membrane selection for electrolyzers, are discussed. We highlight the basic principles, recent studies, and achievements in membrane-based electrolysis for hydrogen production. Previously, the NafionTM membrane was the gold standard for PEM electrolyzers, but today, cheaper and more effective membranes are favored. In this paper, CuCl–HCl electrolysis and its operating parameters are summarized. Additionally, a summary is presented of hydrogen production by water splitting, including a discussion of the advantages, disadvantages, and efficiencies of the relevant technologies. Nonetheless, the development of cost-effective and efficient hydrogen production technologies requires a significant amount of study, especially in terms of optimizing the operation parameters affecting the hydrogen output. Therefore, herein we address the challenges, prospects, and future trends in this field of research, and make critical suggestions regarding the implementation of comprehensive membrane-based electrolytic systems.

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1283
Author(s):  
Zeineb Thiehmed ◽  
Abdul Shakoor ◽  
Talal Altahtamouni

The energy from fossil fuels has been recognized as a main factor of global warming and environmental pollution. Therefore, there is an urgent need to replace fossil fuels with clean, cost-effective, long-lasting, and environmentally friendly fuel to solve the future energy crisis of the world. Therefore, the development of clean, sustainable, and renewable energy sources is a prime concern. In this regard, solar energy-driven hydrogen production is considered as an overriding opening for renewable and green energy by virtue of its high energy efficiency, high energy density, and non-toxicity along with zero emissions. Water splitting is a promising technology for producing hydrogen, which represents a potentially and environmentally clean fuel. Water splitting is a widely known process for hydrogen production using different techniques and materials. Among different techniques of water splitting, electrocatalytic and photocatalytic water splitting using semiconductor materials have been considered as the most scalable and cost-effective approaches for the commercial production of sustainable hydrogen. In order to achieve a high yield of hydrogen from these processes, obtaining a suitable, efficient, and stable catalyst is a significant factor. Among the different types of semiconductor catalysts, tungsten disulfide (WS2) has been widely utilized as a catalytic active material for the water-splitting process, owing to its layered 2D structure and its interesting chemical, physical, and structural properties. However, WS2 suffers from some disadvantages that limit its performance in catalytic water splitting. Among the various techniques and strategies that have been constructed to overcome the limitations of WS2 is heterostructure construction. In this process, WS2 is coupled with another semiconducting material in order to facilitate the charge transfer and prevent the charge recombination, which will enhance the catalytic performance. This review aims to summarize the recent studies and findings on WS2 and its heterostructures as a catalyst in the electrocatalytic and photocatalytic water-splitting processes.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6025
Author(s):  
Marcin Dębowski ◽  
Magda Dudek ◽  
Marcin Zieliński ◽  
Anna Nowicka ◽  
Joanna Kazimierowicz

Hydrogen is an environmentally friendly biofuel which, if widely used, could reduce atmospheric carbon dioxide emissions. The main barrier to the widespread use of hydrogen for power generation is the lack of technologically feasible and—more importantly—cost-effective methods of production and storage. So far, hydrogen has been produced using thermochemical methods (such as gasification, pyrolysis or water electrolysis) and biological methods (most of which involve anaerobic digestion and photofermentation), with conventional fuels, waste or dedicated crop biomass used as a feedstock. Microalgae possess very high photosynthetic efficiency, can rapidly build biomass, and possess other beneficial properties, which is why they are considered to be one of the strongest contenders among biohydrogen production technologies. This review gives an account of present knowledge on microalgal hydrogen production and compares it with the other available biofuel production technologies.


Author(s):  
Roxanne Garland ◽  
Sara Dillich ◽  
Eric Miller ◽  
Kristine Babick ◽  
Kenneth Weil

The goal of the US Department of Energy (DOE) hydrogen production portfolio is to research and develop low-cost, highly efficient and environmentally friendly production technologies based on diverse, domestic resources. The DOE Hydrogen Program integrates basic and applied research, as well as technology development and demonstration, to adequately address a diverse range of technologies and feedstocks. The program encompasses a broad spectrum of coordinated activities within the DOE Offices of Energy Efficiency and Renewable Energy (EERE), Nuclear Energy (NE), Fossil Energy (FE), and Science (SC). Hydrogen can be produced in small, medium, and larger scale facilities, with small-scale distributed facilities producing from 100 to 1,500 kilograms (kg) of hydrogen per day at fueling stations, and medium-scale (also known as semi-central or city-gate) facilities producing from 1,500 to 50,000 kg per day on the outskirts of cities. The largest central facilities would produce more than 50,000 kg of hydrogen per day. Specific technologies currently under program development for distributed hydrogen production include bio-derived renewable liquids and water electrolysis. Centralized renewable production pathways under development include water electrolysis integrated with renewable power (e.g., wind, solar, hydroelectric, or geothermal), biomass gasification, solar-driven high-temperature thermochemical water splitting, direct photoelectrochemical water splitting, and biological production methods using algal/bacterial processes. To facilitate commercialization of hydrogen production via these various technology pathways in the near and long terms, a “Hydrogen Production Roadmap” has been developed which identifies the key challenges and high-priority research and development needs associated with each technology. The aim is to foster research that will lead to hydrogen production with near-zero net greenhouse gas emissions, using renewable energy sources, nuclear energy, and/or coal (with carbon capture and storage). This paper describes the research and development needs and activities by various DOE offices to address the key challenges in the portfolio of hydrogen production technologies.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3380
Author(s):  
Wenmin Wang ◽  
Bing Li ◽  
Hsin-Ju Yang ◽  
Yuzhi Liu ◽  
Lakshmanan Gurusamy ◽  
...  

Hydrogen is considered to be a very efficient and clean fuel since it is a renewable and non-polluting gas with a high energy density; thus, it has drawn much attention as an alternative fuel, in order to alleviate the issue of global warming caused by the excess use of fossil fuels. In this work, a novel Cu/ZnS/COF composite photocatalyst with a core-shell structure was synthesized for photocatalytic hydrogen production via water splitting. The Cu/ZnS/COF microspheres formed by Cu/ZnS crystal aggregation were covered by a microporous thin-film COF with a porous network structure, where COF was also modified by the dual-effective redox sites of C=O and N=N. The photocatalytic hydrogen production results showed that the hydrogen production rate reached 278.4 µmol g−1 h−1, which may be attributed to its special structure, which has a large number of active sites, a more negative conduction band than the reduction of H+ to H2, and the ability to inhibit the recombination of electron-hole pairs. Finally, a possible mechanism was proposed to effectively explain the improved photocatalytic performance of the photocatalytic system. The present work provides a new concept, in order to construct a highly efficient hydrogen production catalyst and broaden the applications of ZnS-based materials.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shan Wang ◽  
Aolin Lu ◽  
Chuan-Jian Zhong

AbstractAs a promising substitute for fossil fuels, hydrogen has emerged as a clean and renewable energy. A key challenge is the efficient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efficient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active, stable, and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use, which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity, stability, and efficiency. This will be followed by outlining current knowledge on the two half-cell reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be discussed. New strategies and insights in exploring the synergistic structure, morphology, composition, and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally, future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efficient production of hydrogen from water splitting electrolysis will also be outlined.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 409
Author(s):  
Xiaofei Tang ◽  
Rui Zhu ◽  
Tianjing Shi ◽  
Yu Wang ◽  
Xiaochen Niu ◽  
...  

High energy density materials (HEDM) are the subject of an extensive research effort in relation to the use of these compounds as components of rocket propellants, powders, and formulations of high-performance explosives. Hexanitrohexaazaisowurtzitane (HNIW, i.e., CL-20) has received much attention in these research fields for its specific impulse, burning rate, ballistics, and detonation velocity. In this paper, the development and performances of the explosives from the first to the fourth generation are briefly summarized, and the synthesis status of the fourth-generation explosive, HNIW, is reviewed. The key issues that restrict the development of industrial amplification synthesis of HNIW are analyzed, and the potential directions of development are proposed. It is pointed out that to synthesize new and efficient catalysts is the key to making the cost-effective manufacturing of CL-20 a reality.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Karthik Kiran Sarigamala ◽  
Shobha Shukla ◽  
Alexander Struck ◽  
Sumit Saxena

AbstractFunctionalization of graphene-based materials using chemical moieties not only modify the electronic structure of the underlying graphene but also enable in limited enhancement of targeted properties. Surface modification of graphene-based materials using other nanostructures enhances the effective properties by minimally modifying the properties of pristine graphene backbone. In this pursuit, we have synthesized bio-inspired hierarchical nanostructures based on Ni–Co layered double hydroxide on reduced graphene oxide core–shells using template based wet chemical approach. The material synthesized have been characterized structurally and electrochemically. The fabricated dendritic morphology of the composite delivers a high specific capacity of 1056 Cg−1. A cost effective solid state hybrid supercapacitor device was also fabricated using the synthesized electrode material which shows excellent performance with high energy density and fast charging capability.


Sign in / Sign up

Export Citation Format

Share Document