AQP4 plasma membrane trafficking or channel gating is not significantly modulated by phosphorylation at COOH-terminal serine residues

2014 ◽  
Vol 307 (10) ◽  
pp. C957-C965 ◽  
Author(s):  
Mette Assentoft ◽  
Brian R. Larsen ◽  
Emma T. B. Olesen ◽  
Robert A. Fenton ◽  
Nanna MacAulay

Aquaporin 4 (AQP4) is the predominant water channel in the mammalian brain and is mainly expressed in the perivascular glial endfeet at the brain-blood interface. AQP4 serves as a water entry site during brain edema formation, and regulation of AQP4 may therefore be of therapeutic interest. Phosphorylation of aquaporins can regulate plasma membrane localization and, possibly, the unit water permeability via gating of the AQP channel itself. In vivo phosphorylation of six serine residues in the COOH terminus of AQP4 has been detected by mass spectrometry: Ser276, Ser285, Ser315, Ser316, Ser321, and Ser322. To address the role of these phosphorylation sites for AQP4 function, serine-to-alanine mutants were created to abolish the phosphorylation sites. All mutants were detected at the plasma membrane of transfected C6 cells, with the fraction of the total cellular AQP4 expressed at the plasma membrane of transfected C6 cells being similar between the wild-type (WT) and mutant forms of AQP4. Activation of protein kinases A, C, and G in primary astrocytic cultures did not affect the plasma membrane abundance of AQP4. The unit water permeability was determined for the mutant AQP4s upon heterologous expression in Xenopus laevis oocytes (along with serine-to-aspartate mutants of the same residues to mimic a phosphorylation). None of the mutant AQP4 constructs displayed alterations in the unit water permeability. Thus phosphorylation of six different serine residues in the COOH terminus of AQP4 appears not to be required for proper plasma membrane localization of AQP4 or to act as a molecular switch to gate the water channel.

2021 ◽  
pp. 100607
Author(s):  
Ivana Malcova ◽  
Ladislav Bumba ◽  
Filip Uljanic ◽  
Darya Kuzmenko ◽  
Jana Nedomova ◽  
...  

2016 ◽  
Vol 91 (3) ◽  
Author(s):  
Jolene Ramsey ◽  
Emily C. Renzi ◽  
Randy J. Arnold ◽  
Jonathan C. Trinidad ◽  
Suchetana Mukhopadhyay

ABSTRACT Palmitoylation is a reversible, posttranslational modification that helps target proteins to cellular membranes. The alphavirus small membrane proteins 6K and TF have been reported to be palmitoylated and to positively regulate budding. 6K and TF are isoforms that are identical in their N termini but unique in their C termini due to a −1 ribosomal frameshift during translation. In this study, we used cysteine (Cys) mutants to test differential palmitoylation of the Sindbis virus 6K and TF proteins. We modularly mutated the five Cys residues in the identical N termini of 6K and TF, the four additional Cys residues in TF's unique C terminus, or all nine Cys residues in TF. Using these mutants, we determined that TF palmitoylation occurs primarily in the N terminus. In contrast, 6K is not palmitoylated, even on these shared residues. In the C-terminal Cys mutant, TF protein levels increase both in the cell and in the released virion compared to the wild type. In viruses with the N-terminal Cys residues mutated, TF is much less efficiently localized to the plasma membrane, and it is not incorporated into the virion. The three Cys mutants have minor defects in cell culture growth but a high incidence of abnormal particle morphologies compared to the wild-type virus as determined by transmission electron microscopy. We propose a model where the C terminus of TF modulates the palmitoylation of TF at the N terminus, and palmitoylated TF is preferentially trafficked to the plasma membrane for virus budding. IMPORTANCE Alphaviruses are a reemerging viral cause of arthritogenic disease. Recently, the small 6K and TF proteins of alphaviruses were shown to contribute to virulence in vivo. Nevertheless, a clear understanding of the molecular mechanisms by which either protein acts to promote virus infection is missing. The TF protein is a component of budded virions, and optimal levels of TF correlate positively with wild-type-like particle morphology. In this study, we show that the palmitoylation of TF regulates its localization to the plasma membrane, which is the site of alphavirus budding. Mutants in which TF is not palmitoylated display drastically reduced plasma membrane localization, which effectively prevents TF from participating in budding or being incorporated into virus particles. Investigation of the regulation of TF will aid current efforts in the alphavirus field searching for approaches to mitigate alphaviral disease in humans.


1994 ◽  
Vol 267 (1) ◽  
pp. C1-C24 ◽  
Author(s):  
N. A. Bradbury ◽  
R. J. Bridges

Cells can rapidly and reversibly alter solute transport rates by changing the kinetics of transport proteins resident within the plasma membrane. Most notably, this can be brought about by reversible phosphorylation of the transporter. An additional mechanism for acute regulation of plasma membrane transport rates is by the regulated exocytic insertion of transport proteins from intracellular vesicles into the plasma membrane and their subsequent regulated endocytic retrieval. Over the past few years, the number of transporters undergoing this regulated trafficking has increased dramatically, such that what was once an interesting translocation of a few transporters has now become a widespread modality for regulating plasma membrane solute permeabilities. The aim of this article is to review the models proposed for the regulated trafficking of transport proteins and what lines of evidence should be obtained to document regulated exocytic insertion and endocytic retrieval of transport proteins. We highlight four transporters, the insulin-responsive glucose transporter, the antidiuretic hormone-responsive water channel, the urinary bladder H(+)-ATPase, and the cystic fibrosis transmembrane conductance regulator Cl- channel, and discuss the various approaches taken to document their regulated trafficking. Finally, we discuss areas of uncertainty that remain to be investigated concerning the molecular mechanisms involved in regulating the trafficking of proteins.


2013 ◽  
Vol 457 (2) ◽  
pp. 289-300 ◽  
Author(s):  
Jakub Jaworski ◽  
Ureshnie Govender ◽  
Cheryl McFarlane ◽  
Michelle de la Vega ◽  
Michelle K. Greene ◽  
...  

We have identified a novel RCE1 isoform which is required for proper H-Ras processing and plasma membrane localization. In addition, we have shown that USP17 can regulate this novel isoform and thus RCE1 activity by deubiquitinating Lys43.


Sign in / Sign up

Export Citation Format

Share Document