scholarly journals miR-19b-3p is associated with a diametric response to resistance exercise in older adults and regulates skeletal muscle anabolism via PTEN inhibition.

Author(s):  
Donato A. Rivas ◽  
Fei Peng ◽  
Townsend Benard ◽  
Adelino Sanchez Ramos da Silva ◽  
Roger A. Fielding ◽  
...  

Our laboratory has discovered that dysregulation in microRNA (miRNA) that target anabolic signaling between younger and older adults is a potential molecular mechanism resulting in age-associated decreases in skeletal muscle mass and function (sarcopenia). Whether differences in miRNA expression profiles account for inter-individual variability in exercise adaptation in older adults is unclear. Understanding paradoxical responses to anabolic stimulation and identifying the mechanisms for this inconsistency in mobility-limited older adults may provide new targets for the treatment of sarcopenia. The objective of the current study was to assess circulating miRNA expression profiles in diametric response of leg lean mass in mobility-limited older individuals after a 6 month progressive resistance exercise training intervention (PRET). Participants were dichotomized by gain (Gainers; n = 33) or loss (Losers; n = 40) of leg lean mass after PRET. Gainers signifcantly increased fat-free mass. Six miRNA (miR-1-3p, miR-19b-3p, miR-92a, miR-126, miR-133a-3p, and miR-133b) were identified to be differentially expressed between Gainers and Losers, with miR-19b-3p being the miRNA most highly associated with increases in fat-free mass. We then used a novel integrative approach to determine if differences in circulating miR-19b-3p potentially translate to augmented anabolic response in human skeletal muscle cells in vitro. Results from this analysis identified that overexpression of miR-19b-3p targeted and downregulated PTEN to facilitate increases in muscle protein synthetic rate. Together these data identify miR-19b-3p as a potent regulator of muscle anabolism that may contribute to an inter-individual response to PRET in mobility-limited older adults.

2020 ◽  
Vol 21 (7) ◽  
pp. 722-734
Author(s):  
Adele Soltani ◽  
Arefeh Jafarian ◽  
Abdolamir Allameh

micro (mi)-RNAs are vital regulators of multiple processes including insulin signaling pathways and glucose metabolism. Pancreatic β-cells function is dependent on some miRNAs and their target mRNA, which together form a complex regulative network. Several miRNAs are known to be directly involved in β-cells functions such as insulin expression and secretion. These small RNAs may also play significant roles in the fate of β-cells such as proliferation, differentiation, survival and apoptosis. Among the miRNAs, miR-7, miR-9, miR-375, miR-130 and miR-124 are of particular interest due to being highly expressed in these cells. Under diabetic conditions, although no specific miRNA profile has been noticed, the expression of some miRNAs and their target mRNAs are altered by posttranscriptional mechanisms, exerting diverse signs in the pathobiology of various diabetic complications. The aim of this review article is to discuss miRNAs involved in the process of stem cells differentiation into β-cells, resulting in enhanced β-cell functions with respect to diabetic disorders. This paper will also look into the impact of miRNA expression patterns on in vitro proliferation and differentiation of β-cells. The efficacy of the computational genomics and biochemical analysis to link the changes in miRNA expression profiles of stem cell-derived β-cells to therapeutically relevant outputs will be discussed as well.


Author(s):  
Michela Bulfoni ◽  
Riccardo Pravisani ◽  
Emiliano Dalla ◽  
Daniela Cesselli ◽  
Masaaki Hidaka ◽  
...  

Author(s):  
Wenhui Huang ◽  
Xuefeng Gu ◽  
Yingying Wang ◽  
Yuhan Bi ◽  
Yu. Yang ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 529-529
Author(s):  
Amanda Randolph ◽  
Tatiana Moro ◽  
Adetutu Odejimi ◽  
Blake Rasmussen ◽  
Elena Volpi

Abstract Type 2 Diabetes Mellitus (T2DM) accelerates the incidence and increases the prevalence of sarcopenia in older adults. This suggests an urgent need for identifying effective sarcopenia treatments for older adults with T2DM. It is unknown whether traditional approaches, such as progressive resistance exercise training (PRET), can effectively counteract sarcopenia in older patients with T2DM. To test the efficacy of PRET for the treatment of sarcopenia in older adults with T2DM, 30 subjects (15 T2DM and 15 age- and sex- matched controls) underwent metabolic testing with muscle biopsies before and after a 13-week full-body PRET program. Primary outcome measures included changes in appendicular lean mass, muscle strength, and mixed muscle fractional synthesis rate (FSR). Before PRET, BMI-adjusted appendicular lean mass was significantly lower in the T2DM group (0.7095±0.0381 versus 0.8151±0.0439, p<0.0001). As a result of PRET, appendicular lean mass adjusted for BMI and muscle strength increased significantly in both groups, but to a lesser extent for the T2DM group (p=0.0009) . Preliminary results for FSR (n=25) indicate that subjects with T2DM had lower basal FSR prior to PRET (p=0.0197) . Basal FSR increased significantly in the control group after PRET (p=0.0196), while it did not change in the T2DM group (p=0.3537). These results suggest that in older adults the positive effect of PRET on muscle anabolism and strength is reduced by T2DM . Thus, older adults with T2DM may require more intensive, multimodal and targeted sarcopenia treatment. Funded by NIH R01AG049611 and P30AG024832.


2017 ◽  
Vol 50 (1) ◽  
Author(s):  
Guankui Du ◽  
Man Xiao ◽  
Xuezi Zhang ◽  
Maoyu Wen ◽  
Chi Pang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document