Activation of PLC-δ1 by Gi/o-coupled receptor agonists

2004 ◽  
Vol 287 (6) ◽  
pp. C1679-C1687 ◽  
Author(s):  
Karnam S. Murthy ◽  
Huiping Zhou ◽  
Jiean Huang ◽  
Srinivas N. Pentyala

The mechanism of phospholipase (PLC)-δ activation by G protein-coupled receptor agonists was examined in rabbit gastric smooth muscle. Ca2+ stimulated an eightfold increase in PLC-δ1 activity in permeabilized muscle cells. Treatment of dispersed or cultured muscle cells with three Gi/o-coupled receptor agonists (somatostatin, δ-opioid agonist [D-Pen2,D-Pen5]enkephalin, and A1 agonist cyclopentyl adenosine) caused delayed increase in phosphoinositide (PI) hydrolysis (8- to 10-fold) that was strongly inhibited by overexpression of dominant-negative PLC-δ1(E341R/D343R; 65–76%) or constitutively active RhoA(G14V). The response coincided with capacitative Ca2+ influx and was not observed in the absence of extracellular Ca2+, but was partly inhibited by nifedipine (16–30%) and strongly inhibited by SKF-96365, a blocker of store-operated Ca2+ channels. Treatment of the cells with a Gq/13-coupled receptor agonist, CCK-8, caused only transient, PLC-β1-mediated PI hydrolysis. Unlike Gi/o-coupled receptor agonists, CCK-8 activated RhoA and stimulated RhoA:PLC-δ1 association. Inhibition of RhoA activity with C3 exoenzyme or by overexpression of dominant-negative RhoA(T19N) or Gα13 minigene unmasked a delayed increase in PI hydrolysis that was strongly inhibited by coexpression of PLC-δ1(E341R/D343R) or by SKF-96365. Agonist-independent capacitative Ca2+ influx induced by thapsigargin stimulated PI hydrolysis (8-fold), which was partly inhibited by nifedipine (∼25%) and strongly inhibited by SKF-96365 (∼75%) and in cells expressing PLC-δ1(E341R/D343R). Agonist-independent Ca2+ release or Ca2+ influx via voltage-gated Ca2+ channels stimulated only moderate PI hydrolysis (2- to 3-fold), which was abolished by PLC-δ1 antibody or nifedipine. We conclude that PLC-δ1 is activated by Gi/o-coupled receptor agonists that do not activate RhoA. The activation is preferentially mediated by Ca2+ influx via store-operated Ca2+ channels.

2005 ◽  
Vol 288 (1) ◽  
pp. G23-G31 ◽  
Author(s):  
Jiean Huang ◽  
Huiping Zhou ◽  
Sunila Mahavadi ◽  
Wimolpak Sriwai ◽  
Vijay Lyall ◽  
...  

The signaling cascades initiated by motilin receptors in gastric and intestinal smooth muscle cells were characterized. Motilin bound with high affinity (IC50 0.7 ± 0.2 nM) to receptors on smooth muscle cells; the receptors were rapidly internalized via G protein-coupled receptor kinase 2 (GRK2). Motilin selectively activated Gq and G13, stimulated Gαq-dependent phosphoinositide (PI) hydrolysis and 1,4,5-trisphosphate (IP3)-dependent Ca2+ release, and increased cytosolic free Ca2+. PI hydrolysis was blocked by expression of Gαq minigene and augmented by overexpression of dominant negative RGS4(N88S) or GRK2(K220R). Motilin induced a biphasic, concentration-dependent contraction (EC50 = 1.0 ± 0.2 nM), consisting of an initial peak followed by a sustained contraction. The initial Ca2+-dependent contraction and myosin light-chain (MLC)20 phosphorylation were inhibited by the PLC inhibitor U-73122 and the MLC kinase inhibitor ML-9 but were not affected by the Rho kinase inhibitor Y27632 or the PKC inhibitor bisindolylmaleimide. Sustained contraction and MLC20 phosphorylation were RhoA dependent and mediated by two downstream messengers: PKC and Rho kinase. The latter was partly inhibited by expression of Gαq or Gα13 minigene and abolished by coexpression of both minigenes. Sustained contraction and MLC20 phosphorylation were partly inhibited by Y27632 and bisindolylmaleimide and abolished by a combination of both inhibitors. The inhibition reflected phosphorylation of two MLC phosphatase inhibitors: CPI-17 via PKC and MYPT1 via Rho kinase. We conclude that motilin initiates a Gαq-mediated cascade involving Ca2+/calmodulin activation of MLC kinase and transient MLC20 phosphorylation and contraction as well as a sustained Gαq- and Gα13-mediated, RhoA-dependent cascade involving phosphorylation of CPI-17 by PKC and MYPT1 by Rho kinase, leading to inhibition of MLC phosphatase and sustained MLC20 phosphorylation and contraction.


1998 ◽  
Vol 274 (5) ◽  
pp. C1199-C1205 ◽  
Author(s):  
Karnam S. Murthy ◽  
Gabriel M. Makhlouf

Recent studies on the role of nitric oxide (NO) in gastrointestinal smooth muscle have raised the possibility that NO-stimulated cGMP could, in the absence of cGMP-dependent protein kinase (PKG) activity, act as a Ca2+-mobilizing messenger [K. S. Murthy, K.-M. Zhang, J.-G. Jin, J. T. Grider, and G. M. Makhlouf. Am. J. Physiol. 265 ( Gastrointest. Liver Physiol. 28): G660–G671, 1993]. This notion was examined in dispersed gastric smooth muscle cells with 8-bromo-cGMP (8-BrcGMP) and with NO and vasoactive intestinal peptide (VIP), which stimulate endogenous cGMP. In muscle cells treated with cAMP-dependent protein kinase (PKA) and PKG inhibitors (H-89 and KT-5823), 8-BrcGMP (10 μM), NO (1 μM), and VIP (1 μM) stimulated45Ca2+release (21 ± 3 to 30 ± 1% decrease in45Ca2+cell content); Ca2+ release stimulated by 8-BrcGMP was concentration dependent with an EC50 of 0.4 ± 0.1 μM and a threshold of 10 nM. 8-BrcGMP and NO increased cytosolic free Ca2+ concentration ([Ca2+]i) and induced contraction; both responses were abolished after Ca2+ stores were depleted with thapsigargin. With VIP, which normally increases [Ca2+]iby stimulating Ca2+ influx, treatment with PKA and PKG inhibitors caused a further increase in [Ca2+]ithat reverted to control levels in cells pretreated with thapsigargin. Neither Ca2+ release nor contraction induced by cGMP and NO in permeabilized muscle cells was affected by heparin or ruthenium red. Ca2+ release induced by maximally effective concentrations of cGMP and inositol 1,4,5-trisphosphate (IP3) was additive, independent of which agent was applied first. We conclude that, in the absence of PKA and PKG activity, cGMP stimulates Ca2+ release from an IP3-insensitive store and that its effect is additive to that of IP3.


1993 ◽  
Vol 265 (4) ◽  
pp. G660-G671 ◽  
Author(s):  
K. S. Murthy ◽  
K. M. Zhang ◽  
J. G. Jin ◽  
J. R. Grider ◽  
G. M. Makhlouf

Vasoactive intestinal peptide (VIP) and peptide histidine-isoleucine (PHI) receptors and the signaling pathways to which they are coupled were characterized in dispersed gastric smooth muscle cells. Radioligand binding using 125I-labeled VIP and PHI identified 4 classes of receptors: VIP-preferring and PHI-preferring receptors recognized by both ligands and readily desensitized by the preferred ligand, and VIP-specific and PHI-specific receptors recognized by only 1 ligand and resistant to desensitization. All except VIP-specific receptors were coupled to adenylate cyclase. VIP-specific receptors mediated a G protein-coupled Ca2+ influx that led to activation of NO synthase (NOS), NO-dependent activation of soluble guanylate cyclase, and activation of guanosine 3',5'-cyclic monophosphate (cGMP) kinase resulting in muscle relaxation. The entire cascade was blocked by Ca2+ channel and/or calmodulin antagonists. The NOS inhibitor NG-nitro-L-arginine abolished L-[3H]citrulline (coproduct of NO synthesis) and cGMP generation and partly inhibited (52 +/- 4%) relaxation. The components of response mediated by VIP-specific receptors (increase in [Ca2+]i, L-[3H]citrulline, and cGMP) were preserved after desensitization. Insertion of guanosine 5'-O-(beta-thio)diphosphate into reversibly permeabilized muscle cells abolished responses mediated by VIP-preferring and VIP-specific receptors. VIP stimulated both adenosine 3',5'-cyclic monophosphate (cAMP)-kinase and cGMP-kinase activities consistent with stimulation of cAMP and cGMP. Both kinases contributed to relaxation that was partly inhibited by cAMP-kinase [H-89 and (R)-p-adenosine 3',5'-cyclic monophosphorothioate] and cGMP-kinase (KT-5823) inhibitors and abolished by a combination of the 2 types of inhibitors. We conclude that VIP-specific receptors mediate a G protein-coupled Ca2+ influx leading to activation of a constitutive Ca2+/calmodulin-dependent NOS and generation of NO, which is partly responsible for relaxation in smooth muscle.


1992 ◽  
Vol 262 (3) ◽  
pp. G461-G469 ◽  
Author(s):  
L. Zhang ◽  
Z. F. Gu ◽  
T. Pradhan ◽  
R. T. Jensen ◽  
P. N. Maton

On the basis of opioid-stimulated contraction of dispersed gastric smooth muscle cells it has been suggested that these cells possess opioid receptors of three subtypes: kappa (kappa), mu (mu), and delta (delta). We have used selective peptidase-resistant radioligands, agonists and antagonists, to examine receptor subtypes on dispersed gastric smooth muscle cells from guinea pigs prepared by collagenase digestion. The kappa-agonist U-50488H, the mu-agonist [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DAGO), and the delta-agonist [D-Pen2,Pen5]enkephalin (DPDPE) each caused muscle contraction. The concentrations required to caused half-maximal contraction were U50488H (6 pM) greater than DAGO (13 pM) greater than DPDPE (6 nM). The abilities of these agonists to inhibit binding of [3H]U-69593 (kappa-preferring) by 50% were U50488H (43 nM) greater than DAGO (43 microM) greater than DPDPE (200 microM). Their abilities to inhibit binding of [3H]naloxone (mu-preferring) by 50% were DAGO (0.2 microM) greater than U50488H (10 microM) greater than DPDPE (greater than 100 microM). No binding could be detected with the delta-selective ligand [3H]DPDPE. The kappa-preferring antagonist Mr2266 (10 nM) preferentially inhibited contraction stimulated by the kappa-agonist U50488H, and naltrexone (10 nM) (mu-selective antagonist) preferentially inhibited contraction stimulated by the mu-agonist DAGO. ICI 174864 (200 microM; delta-selective antagonist) had no effect on contraction stimulated by mu-, kappa-, or delta-agonists. Contraction stimulated by the delta-agonist DPDPE was inhibited by both kappa- and mu-receptor antagonists. Studies on the effect of the antagonists on binding of [3H]naloxone and [3H]U69593 also provided evidence for kappa- and mu-sites but nor for delta-sites.(ABSTRACT TRUNCATED AT 250 WORDS)


2002 ◽  
Vol 157 (5) ◽  
pp. 819-830 ◽  
Author(s):  
Takahiro Tsuji ◽  
Toshimasa Ishizaki ◽  
Muneo Okamoto ◽  
Chiharu Higashida ◽  
Kazuhiro Kimura ◽  
...  

The small GTPase Rho acts on two effectors, ROCK and mDia1, and induces stress fibers and focal adhesions. However, how ROCK and mDia1 individually regulate signals and dynamics of these structures remains unknown. We stimulated serum-starved Swiss 3T3 fibroblasts with LPA and compared the effects of C3 exoenzyme, a Rho inhibitor, with those of Y-27632, a ROCK inhibitor. Y-27632 treatment suppressed LPA-induced formation of stress fibers and focal adhesions as did C3 exoenzyme but induced membrane ruffles and focal complexes, which were absent in the C3 exoenzyme-treated cells. This phenotype was suppressed by expression of N17Rac. Consistently, the amount of GTP-Rac increased significantly by Y-27632 in LPA-stimulated cells. Biochemically, Y-27632 suppressed tyrosine phosphorylation of paxillin and focal adhesion kinase and not that of Cas. Inhibition of Cas phosphorylation with PP1 or expression of a dominant negative Cas mutant inhibited Y-27632–induced membrane ruffle formation. Moreover, Crk-II mutants lacking in binding to either phosphorylated Cas or DOCK180 suppressed the Y-27632–induced membrane ruffle formation. Finally, expression of a dominant negative mDia1 mutant also inhibited the membrane ruffle formation by Y-27632. Thus, these results have revealed the Rho-dependent Rac activation signaling that is mediated by mDia1 through Cas phosphorylation and antagonized by the action of ROCK.


2002 ◽  
Vol 34 (10) ◽  
pp. 1399-1409 ◽  
Author(s):  
Karsten Peppel ◽  
Lisheng Zhang ◽  
Tam T.T. Huynh ◽  
Xuewei Huang ◽  
Anne Jacobson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document