scholarly journals Purinergic regulation of high-glucose-induced caspase-1 activation in the rat retinal Müller cell line rMC-1

2011 ◽  
Vol 301 (5) ◽  
pp. C1213-C1223 ◽  
Author(s):  
Katherine E. Trueblood ◽  
Susanne Mohr ◽  
George R. Dubyak

Chronic activation of proinflammatory caspase-1 in the retinas of diabetic animals and patients in vivo and retinal Müller cells in vitro is well documented. In this study we characterized how elevated glucose and extracellular purines contribute to the activation of caspase-1 in a cultured rat Müller cell (rMC-1) model. The ability of high glucose (25 mM, 24 h) to activate caspase-1 was attenuated by either apyrase, which metabolizes extracellular ATP to AMP, or adenosine deaminase (ADA), which metabolizes extracellular adenosine to inosine. This suggested that autocrine stimulation of ATP-sensing P2 receptors and adenosine-sensing P1 receptors may in part mediate the response to high glucose. Exogenous ATP, 5′- N-ethylcarboxamido-adenosine (NECA), a nonselective P1 receptor agonist, or forskolin (FSK) increased caspase-1 activity in rMC-1 cells cultured in control glucose (5 mM) medium. Accumulation of active caspase-1 was also increased by dipyridamole, which suppresses adenosine reuptake. High-glucose stimulation of caspase-1 was attenuated by suramin, a nonselective P2 antagonist, or A2 adenosine receptor antagonists, but not by antagonism of P2X7 ATP-gated ion channel receptors. Although high glucose increased P2X7 mRNA, neither P2X7 protein nor function was detected in rMC-1 cells. The increased caspase-1 activity stimulated by high glucose, FSK, NECA, or ATP was correlated with increased gene expression of caspase-1 and thioredoxin-interacting-protein (TXNIP). These findings support a novel role for autocrine P1 and P2 purinergic receptors coupled to cAMP signaling cascades and transcriptional induction of caspase-1 in mediating the high-glucose-induced activation of caspase-1 and secretion of IL-1β in a cell culture model of nonhematopoietic retinal Müller cells.

1999 ◽  
Vol 16 (6) ◽  
pp. 1169-1180 ◽  
Author(s):  
GENEVIEVE A. NAPPER ◽  
MICHAEL KALLONIATIS

Glutamate and γ-aminobutyric acid (GABA) are the dominant amino acids in the retina and brain. The manufacturing and degradation pathways of both of these amino acids are intricately linked with the tricarboxylic acid cycle leading to rapid redistribution of these amino acids after metabolic insult. Postmortem ischemia in mammalian retina predominantly results in a loss of glutamate and GABA from neurons and accumulation of these amino acids within Müller cells. This accumulation of glutamate and GABA in Müller cells may occur as a result of increased release of these neurotransmitters from neurons, and decreased degradation. Quantification of the semisaturation value (half-maximal response) for glutamate and GABA Müller cell loading during postmortem ischemia indicated a shorter semisaturation value for GABA than glutamate. Such changes are consistent with a single aerobically dependent GABA-degradation pathway, and the existence of multiple glutamate-degradation pathways. Comparison with the in vitro ischemic model showed similar qualitative characteristics, but a markedly increased semisaturation time for glutamate and GABA Müller cell loading (a factor of 5–10) in the postmortem ischemia model. We interpret these differences to indicate that the in vitro condition provides a more immediate and/or severe ischemic insult. In the postmortem ischemia model, the delayed glial cell loading implies the availability of internal stores of both glucose and/or oxygen. Increased glial and neuronal immunoreactivity for the amino acids involved in transamination reactions, aspartate, alanine, leucine, and ornithine was observed, indicating a potential shift in the equilibrium of transamination reactions associated with glutamate production. These findings provide evidence that, in the rat retina, there are multiple pathways subserving glutamate production/degradation that include a multitude of transamination reactions. Further evidence is therefore provided to support a role for all four amino acids in glutamate metabolism within a variety of retinal neurons and glia.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Hong Feng ◽  
Junling Gu ◽  
Fang Gou ◽  
Wei Huang ◽  
Chenlin Gao ◽  
...  

While inflammation is considered a central component in the development in diabetic nephropathy, the mechanism remains unclear. The NLRP3 inflammasome acts as both a sensor and a regulator of the inflammatory response. The NLRP3 inflammasome responds to exogenous and endogenous danger signals, resulting in cleavage of procaspase-1 and activation of cytokines IL-1β, IL-18, and IL-33, ultimately triggering an inflammatory cascade reaction. This study observed the expression of NLRP3 inflammasome signaling stimulated by high glucose, lipopolysaccharide, and reactive oxygen species (ROS) inhibitor N-acetyl-L-cysteine in glomerular mesangial cells, aiming to elucidate the mechanism by which the NLRP3 inflammasome signaling pathway may contribute to diabetic nephropathy. We found that the expression of thioredoxin-interacting protein (TXNIP), NLRP3, and IL-1βwas observed by immunohistochemistry in vivo. Simultaneously, the mRNA and protein levels of TXNIP, NLRP3, procaspase-1, and IL-1βwere significantly induced by high glucose concentration and lipopolysaccharide in a dose-dependent and time-dependent manner in vitro. This induction by both high glucose and lipopolysaccharide was significantly inhibited by N-acetyl-L-cysteine. Our results firstly reveal that high glucose and lipopolysaccharide activate ROS/TXNIP/ NLRP3/IL-1βinflammasome signaling in glomerular mesangial cells, suggesting a mechanism by which inflammation may contribute to the development of diabetic nephropathy.


2018 ◽  
Vol 120 (3) ◽  
pp. 973-984 ◽  
Author(s):  
Vanina Netti ◽  
Alejandro Pizzoni ◽  
Martha Pérez-Domínguez ◽  
Paula Ford ◽  
Herminia Pasantes-Morales ◽  
...  

Neuronal activity in the retina generates osmotic gradients that lead to Müller cell swelling, followed by a regulatory volume decrease (RVD) response, partially due to the isoosmotic efflux of KCl and water. However, our previous studies in a human Müller cell line (MIO-M1) demonstrated that an important fraction of RVD may also involve the efflux of organic solutes. We also showed that RVD depends on the swelling-induced Ca2+ release from intracellular stores. Here we investigate the contribution of taurine (Tau) and glutamate (Glu), the most relevant amino acids in Müller cells, to RVD through the volume-regulated anion channel (VRAC), as well as their Ca2+ dependency in MIO-M1 cells. Swelling-induced [3H]Tau/[3H]Glu release was assessed by radiotracer assays and cell volume by fluorescence videomicroscopy. Results showed that cells exhibited an osmosensitive efflux of [3H]Tau and [3H]Glu (Tau > Glu) blunted by VRAC inhibitors 4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)-oxybutyric acid and carbenoxolone reducing RVD. Only [3H]Tau efflux was mainly dependent on Ca2+ release from intracellular stores. RVD was unaffected in a Ca2+-free medium, probably due to Ca2+-independent Tau and Glu release, but was reduced by chelating intracellular Ca2+. The inhibition of phosphatidylinositol-3-kinase reduced [3H]Glu efflux but also the Ca2+-insensitive [3H]Tau fraction and decreased RVD, providing evidence of the relevance of this Ca2+-independent pathway. We propose that VRAC-mediated Tau and Glu release has a relevant role in RVD in Müller cells. The observed disparities in Ca2+ influence on amino acid release suggest the presence of VRAC isoforms that may differ in substrate selectivity and regulatory mechanisms, with important implications for retinal physiology. NEW & NOTEWORTHY The mechanisms for cell volume regulation in retinal Müller cells are still unknown. We show that swelling-induced taurine and glutamate release mediated by the volume-regulated anion channel (VRAC) largely contributes the to the regulatory volume decrease response in a human Müller cell line. Interestingly, the hypotonic-induced efflux of these amino acids exhibits disparities in Ca2+-dependent and -independent regulatory mechanisms, which strongly suggests that Müller cells may express different VRAC heteromers formed by the recently discovered leucine-rich repeat containing 8 (LRRC8) proteins.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3216
Author(s):  
Maryvonne Ardourel ◽  
Chloé Felgerolle ◽  
Arnaud Pâris ◽  
Niyazi Acar ◽  
Khaoula Ramchani Ben Othman ◽  
...  

To prevent ocular pathologies, new generation of dietary supplements have been commercially available. They consist of nutritional supplement mixing components known to provide antioxidative properties, such as unsaturated fatty acid, resveratrol or flavonoids. However, to date, only one preclinical study has evaluated the impact of a mixture mainly composed of those components (Nutrof Total®) on the retina and demonstrated that in vivo supplementation prevents the retina from structural and functional injuries induced by light. Considering the crucial role played by the glial Müller cells in the retina, particularly to regulate the glutamate cycle to prevent damage in oxidative stress conditions, we questioned the impact of this ocular supplement on the glutamate metabolic cycle. To this end, various molecular aspects associated with the glutamate/glutamine metabolism cycle in Müller cells were investigated on primary Müller cells cultures incubated, or not, with the commercially mix supplement before being subjected, or not, to oxidative conditions. Our results demonstrated that in vitro supplementation provides guidance of the glutamate/glutamine cycle in favor of glutamine synthesis. These results suggest that glutamine synthesis is a crucial cellular process of retinal protection against oxidative damages and could be a key step in the previous in vivo beneficial results provided by the dietary supplementation.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Kim A Connelly ◽  
Darren J Kelly ◽  
Michael Zhang ◽  
Kerri Thai ◽  
Andrew Advani ◽  
...  

Background: Alterations in the thioredoxin (TRX) antioxidant system have been implicated in the pathogenesis of cardiac injury, particularly in the diabetic setting. While constitutively present, TRX activity is reduced by the presence of its endogenous inhibitor, thioredoxin interacting protein (TxnIP). We hypothesized that by increasing TxnIP, diabetes may reduce TRX activity and contribute to oxidative stress. Methods: Cell culture studies were performed using the H9C2 rat cardiomyoblast cell line and neonatal cardiomyocytes isolated from 1 day old Sprague Dawley rat neonates. In-vivo studies were performed using a hemodynamically-validated rodent model of diabetic diastolic heart failure, the diabetic (mRen-2)27 transgenic rat (Ren-2). Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) was used as a measure of oxidative stress. Results: In- vitro, high glucose (25mmol/l) resulted in increased TxnIP mRNA expression in both neonatal cardiomyocytes as well as H92C cells (2.21 ± 0.6 v 1.00 ± 0.19, p<0.05 compared to normoglycaemic conditions) with a 45% reduction in TRX activity (0.11 ± 0.01 v 0.061± 0.003, p<0.01). In-vivo, diabetes led to a 250% rise in TxnIP mRNA expression compared to control (2.54 ± 0.5 v 1.00 ± 0.11, p<0.001) that was accompanied by a three fold rise in urinary 8-OHdG (680 ± 280 v 1395 ± 391 ng/ml, p<0.001). Conclusion: In both the in vitro and in vivo settings, high glucose leads to TxnIP over-expression associated with reduced TRX activity thereby increasing oxidative stress and implicating this system in the pathogenesis of the cardiac dysfunction that characterizes the diabetic state. Pharmacological manipulation of the TRX-TxnIP system may represent a novel target to reduce diabetic complications.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Bin Leng ◽  
Yingjie Zhang ◽  
Xinran Liu ◽  
Zhen Zhang ◽  
Yang Liu ◽  
...  

Long-term exposure to high glucose induces vascular endothelial inflammation that can result in cardiovascular disease. Astragaloside IV (As-IV) is widely used for anti-inflammatory treatment of cardiovascular diseases. However, its mechanism of action is still not fully understood. In this study, we investigated the effect of As-IV on high glucose-induced endothelial inflammation and explored its possible mechanisms. In vivo, As-IV (40 and 80 mg/kg/d) was orally administered to rats for 8 weeks after a single intraperitoneal injection of streptozotocin (STZ, 65 mg/kg). In vitro, human umbilical vein endothelial cells (HUVECs) were treated with high glucose (33 mM glucose) in the presence or absence of As-IV, NPS2143 (CaSR inhibitor), BAY 11-7082 (NF-κB p65 inhibitor), and INF39 (NLRP3 inhibitor), and overexpression of CaSR was induced by infection of CaSR-overexpressing lentiviral vectors to further discuss the anti-inflammatory property of As-IV. The results showed that high glucose increased the expression of interleukin-18 (IL-18), interleukin-1β (IL-1β), NLRP3, caspase-1, and ASC, as well as the protein level of TLR4, nucleus p65, and CaSR. As-IV can reverse these changes in vivo and in vitro. Meanwhile, NPS2143, BAY 11-7082, and INF39 could significantly abolish the high glucose-enhanced NLRP3, ASC, caspase-1, IL-18, and IL-1β expression in vitro. In addition, both NPS2143 and BAY 11-7082 attenuated high glucose-induced upregulation of NLRP3, ASC, caspase-1, IL-18, and IL-1β expression. In conclusion, this study suggested that As-IV could inhibit high glucose-induced NLRP3 inflammasome activation and subsequent secretion of proinflammatory cytokines via inhibiting TLR4/NF-κB signaling pathway and CaSR, which provides new insights into the anti-inflammatory activity of As-IV.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jun Yu ◽  
Yan Yan ◽  
Yiye Chen ◽  
Yan Zheng ◽  
Xiaoyan Yu ◽  
...  

Background. The aim of this study was to research the effects of glutamine synthetase (GS) and glutamate aspartate transporter (GLAST) in rat Müller cells and the effects of an adenosine A2AR antagonist (SCH 442416) on GS and GLAST in hypoxia both in vivo and in vitro. Methods. This study used RT-PCR and Western blotting to quantify the expressions of GS and GLAST under different hypoxic conditions as well as the expressions of GS and GLAST at different drug concentrations. A cell viability assay was used to assess drug toxicity. Results. mRNA and protein expression of GS and GLAST in hypoxia Group 24 h was significantly increased. mRNA and protein expressions of GS and GLAST both increased in Group 1 μM SCH 442416 compared with other groups. One micromolar SCH 442416 could upregulate GS and GLAST’s activity in hypoxia both in vivo and in vitro. Conclusions. Hypoxia activates GS and GLAST in rat retinal Müller cells in a short time in vitro. (2) A2AR antagonists upregulate the activity of GS and GLAST in hypoxia both in vivo and in vitro.


Neuroglia ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 280-291 ◽  
Author(s):  
Yi Qiu ◽  
Hongpeng Huang ◽  
Anupriya Chatterjee ◽  
Loïc Teuma ◽  
Fabienne Baumann ◽  
...  

The pathogenesis of diabetic retinopathy is closely associated with the breakdown of the neurovascular unit including the glial cells. Deficiency of nucleoside diphosphate kinase B (NDPK-B) results in retinal vasoregression mimicking diabetic retinopathy. Increased retinal expression of Angiopoietin-2 (Ang-2) initiates vasoregression. In this study, Müller cell activation, glial Ang-2 expression, and the underlying mechanisms were investigated in streptozotocin-induced diabetic NDPK-B deficient (KO) retinas and Müller cells isolated from the NDPK-B KO retinas. Müller cells were activated and Ang-2 expression was predominantly increased in Müller cells in normoglycemic NDPK-B KO retinas, similar to diabetic wild type (WT) retinas. Diabetes induction in the NDPK-B KO mice did not further increase its activation. Additionally, cultured NDPK-B KO Müller cells were more activated and showed higher Ang-2 expression than WT cells. Müller cell activation and Ang-2 elevation were observed upon high glucose treatment in WT, but not in NDPK-B KO cells. Moreover, increased levels of the transcription factor forkhead box protein O1 (FoxO1) were detected in non-diabetic NDPK-B KO Müller cells. The siRNA-mediated knockdown of FoxO1 in NDPK-B deficient cells interfered with Ang-2 upregulation. These data suggest that FoxO1 mediates Ang-2 upregulation induced by NDPK-B deficiency in the Müller cells and thus contributes to the onset of retinal vascular degeneration.


2020 ◽  
Author(s):  
Tianqin Wang ◽  
Chaoyang Zhang ◽  
Hai Xie ◽  
Qiuxue Yi ◽  
Dandan Liu ◽  
...  

Abstract Background: Diabetic macular edema (DME) is the most common cause of vision loss in patients with diabetic retinopathy. The efficacy of anti-VEGF therapy has been well demonstrated and become the standard of care in the management of DME. The present study is to explore the possible mechanism(s) of ranibizumab in protecting Müller cells from cellular edema in experimental diabetic retinopathy. Methods: Sprague-Dawley rats were rendered diabetes with intraperitoneal injection of streptozotocin. Intravitreal injection of ranibizumab was performed 8 weeks after diabetes onset. Four weeks later, the rats were killed and the retinas were harvested for examination. rMC-1 cells (rat Müller cell line) were treated with glyoxal for 24 hours, with or without ranibizumab. Cell viability was detected with CCK-8 assay. The expressions of inwardly rectifying K + channel 4.1 (Kir4.1), aquaporin 4 (AQP4), Dystrophin 71 (Dp71), vascular endothelial growth factor A (VEGF-A), glutamine synthetase (GS) and sodium-potassium-ATPase (Na + -K + -ATPase) were examined with Western blot. VEGF-A in the supernatant of cell culture was detected with ELISA. The intracellular potassium and sodium levels were detected with specific indicators. Results: Compared to the normal control, the protein expressions of Kir4.1, AQP4 and Dp71 were down-regulated significantly in diabetic rat retinas, which were prevented by ranibizumab. The above changes were recapitulated in vitro . As compared with the control, the intracellular potassium level in glyoxal-treated rMC-1 cells was increased, while the intracellular sodium level and Na + -K + -ATPase protein level remained unchanged. However, ranibizumab treatment increased Na + -K + -ATPase protein expression and decreased intracellular sodium, but not potassium level. Conclusion: Ranibizumab protected Müller cells from intracellular edema through up-regulation of Kir4.1, AQP4, and Dp71 by directly binding VEGF-A. It also increased the expression of Na + -K + -ATPase, contributing to reduction of the intracellular osmotic pressure.


Sign in / Sign up

Export Citation Format

Share Document