scholarly journals Altered skeletal muscle microtubule-mitochondrial VDAC2 binding is related to bioenergetic impairments after paclitaxel but not vinblastine chemotherapies

2019 ◽  
Vol 316 (3) ◽  
pp. C449-C455 ◽  
Author(s):  
Sofhia V. Ramos ◽  
Meghan C. Hughes ◽  
Christopher G. R. Perry

Microtubule-targeting chemotherapies are linked to impaired cellular metabolism, which may contribute to skeletal muscle dysfunction. However, the mechanisms by which metabolic homeostasis is perturbed remains unknown. Tubulin, the fundamental unit of microtubules, has been implicated in the regulation of mitochondrial-cytosolic ADP/ATP exchange through its interaction with the outer membrane voltage-dependent anion channel (VDAC). Based on this model, we predicted that disrupting microtubule architecture with the stabilizer paclitaxel and destabilizer vinblastine would impair skeletal muscle mitochondrial bioenergetics. Here, we provide in vitro evidence of a direct interaction between both α-tubulin and βII-tubulin with VDAC2 in untreated single extensor digitorum longus (EDL) fibers. Paclitaxel increased both α- and βII-tubulin-VDAC2 interactions, whereas vinblastine had no effect. Utilizing a permeabilized muscle fiber bundle preparation that retains the cytoskeleton, paclitaxel treatment impaired the ability of ADP to attenuate H2O2 emission, resulting in greater H2O2 emission kinetics. Despite no effect on tubulin-VDAC2 binding, vinblastine still altered mitochondrial bioenergetics through a surprising increase in ADP-stimulated respiration while also impairing ADP suppression of H2O2 and increasing mitochondrial susceptibility to calcium-induced formation of the proapoptotic permeability transition pore. Collectively, these results demonstrate that altering microtubule architecture with chemotherapeutics disrupts mitochondrial bioenergetics in EDL skeletal muscle. Specifically, microtubule stabilization increases H2O2 emission by impairing ADP sensitivity in association with greater tubulin-VDAC binding. In contrast, decreasing microtubule abundance triggers a broad impairment of ADP’s governance of respiration and H2O2 emission as well as calcium retention capacity, albeit through an unknown mechanism.

2005 ◽  
Vol 289 (4) ◽  
pp. C994-C1001 ◽  
Author(s):  
Peter J. Adhihetty ◽  
Vladimir Ljubicic ◽  
Keir J. Menzies ◽  
David A. Hood

Apoptosis can be evoked by reactive oxygen species (ROS)-induced mitochondrial release of the proapoptotic factors cytochrome c and apoptosis-inducing factor (AIF). Because skeletal muscle is composed of two mitochondrial subfractions that reside in distinct subcellular regions, we investigated the apoptotic susceptibility of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria. SS and IMF mitochondria exhibited a dose-dependent release of protein in response to H2O2 (0, 25, 50, and 100 μM). However, IMF mitochondria were more sensitive to H2O2 and released a 2.5-fold and 10-fold greater amount of cytochrome c and AIF, respectively, compared with SS mitochondria. This finding coincided with a 44% ( P < 0.05) greater rate of opening (maximum rate of absorbance decrease, Vmax) of the protein release channel, the mitochondrial permeability transition pore (mtPTP), in IMF mitochondria. IMF mitochondria also exhibited a 47% ( P < 0.05) and 60% (0.05 < P < 0.1) greater expression of the key mtPTP component voltage-dependent anion channel and cyclophilin D, respectively, along with a threefold greater cytochrome c content, but similar levels of AIF compared with SS mitochondria. Despite a lower susceptibility to H2O2-induced release, SS mitochondria possessed a 10-fold greater Bax-to-Bcl-2 ratio ( P < 0.05), a 2.7-fold greater rate of ROS production, and an approximately twofold greater membrane potential compared with IMF mitochondria. The expression of the antioxidant enzyme Mn2+-superoxide dismutase was similar between subfractions. Thus the divergent protein composition and function of the mtPTP between SS and IMF mitochondria contributes to a differential release of cytochrome c and AIF in response to ROS. Given the relatively high proportion of IMF mitochondria within a muscle fiber, this subfraction is likely most important in inducing apoptosis when presented with apoptotic stimuli, ultimately leading to myonuclear decay and muscle fiber atrophy.


1999 ◽  
Vol 66 ◽  
pp. 167-179 ◽  
Author(s):  
Martin Crompton ◽  
Sukaina Virji ◽  
Veronica Doyle ◽  
Nicholas Johnson ◽  
John M. Ward

This chapter reviews recent advances in the identification of the structural elements of the permeability transition pore. The discovery that cyclosporin A (CsA) inhibits the pore proved instrumental. Various approaches indicate that CsA blocks the pore by binding to cyclophilin (CyP)-D. In particular, covalent labelling of CyP-D in situ by a photoactive CsA derivative has shown that pore ligands have the same effects on the degree to which CsA both blocks the pore and binds to CyP-D. The recognition that CyP-D is a key component has enabled the other constituents to be resolved. Use of a CyP-D fusion protein as affinity matrix has revealed that CyP-D binds very strongly to 1:1 complexes of the voltage-dependent anion channel (from the outer membrane) and adenine nucleotide translocase (inner membrane). Our current model envisages that the pore arises as a complex between these three components at contact sites between the mitochondrial inner and outer membranes. This is in line with recent reconstitutions of pore activity from protein fractions containing these proteins. The strength of interaction between these proteins suggests that it may be a permanent feature rather than assembled only under pathological conditions. Calcium, the key activator of the pore, does not appear to affect pore assembly; rather, an allosteric action allowing pore flicker into an open state is indicated. CsA inhibits pore flicker and lowers the binding affinity for calcium. Whether adenine nucleotide translocase or the voltage-dependent anion channel (via inner membrane insertion) provides the inner membrane pore has not been settled, and data relevant to this issue are also documented.


2008 ◽  
Vol 18 (6) ◽  
pp. 1258-1261 ◽  
Author(s):  
C. Li ◽  
L.-N. Hu ◽  
X.-J. Dong ◽  
C.-X. Sun ◽  
Y. Mi

Human ovarian cancer models were established in nude mice by transplanting SKOV3 cells, and then tumors were exposed to high-intensity electric pulses with a voltage 1000 V, frequency of 1000 Hz, and duration of 250 ns for 1 min. Mitochondria permeability transition pore (PTP) was inspected by cofocal microscope; cytochrome C (Cyt C) and apoptosis-induced factor (AIF) were determined by immunohistochemistry; and voltage-dependent anion channel (VDAC) was measured by immunofluorescence. High-intensity electric pulses exposure led to increases of PTP, Cyt C, and AIF and a decrease of VDAC. These findings revealed that high-intensity electric pulses activated mitochondria electroporation, apoptosis was realized via mitochondria pathway.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Andrea Urbani ◽  
Valentina Giorgio ◽  
Andrea Carrer ◽  
Cinzia Franchin ◽  
Giorgio Arrigoni ◽  
...  

Abstract The molecular identity of the mitochondrial megachannel (MMC)/permeability transition pore (PTP), a key effector of cell death, remains controversial. By combining highly purified, fully active bovine F-ATP synthase with preformed liposomes we show that Ca2+ dissipates the H+ gradient generated by ATP hydrolysis. After incorporation of the same preparation into planar lipid bilayers Ca2+ elicits currents matching those of the MMC/PTP. Currents were fully reversible, were stabilized by benzodiazepine 423, a ligand of the OSCP subunit of F-ATP synthase that activates the MMC/PTP, and were inhibited by Mg2+ and adenine nucleotides, which also inhibit the PTP. Channel activity was insensitive to inhibitors of the adenine nucleotide translocase (ANT) and of the voltage-dependent anion channel (VDAC). Native gel-purified oligomers and dimers, but not monomers, gave rise to channel activity. These findings resolve the long-standing mystery of the MMC/PTP and demonstrate that Ca2+ can transform the energy-conserving F-ATP synthase into an energy-dissipating device.


2005 ◽  
Vol 386 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Ran ZALK ◽  
Adrian ISRAELSON ◽  
Erez S. GARTY ◽  
Heftsi AZOULAY-ZOHAR ◽  
Varda SHOSHAN-BARMATZ

The VDAC (voltage-dependent anion channel) plays a central role in apoptosis, participating in the release of apoptogenic factors including cytochrome c. The mechanisms by which VDAC forms a protein-conducting channel for the passage of cytochrome c are not clear. The present study approaches this problem by addressing the oligomeric status of VDAC and its role in the induction of the permeability transition pore and cytochrome c release. Chemical cross-linking of isolated mitochondria or purified VDAC with five different reagents proved that VDAC exists as dimers, trimers or tetramers. Fluorescence resonance energy transfer between fluorescently labelled VDACs supports the concept of dynamic VDAC oligomerization. Mitochondrial cross-linking prevented both permeability transition pore opening and release of cytochrome c, yet had no effect on electron transport or Ca2+ uptake. Bilayer-reconstituted purified cross-linked VDAC showed decreased conductance and voltage-independent channel activity. In the dithiobis(succinimidyl propionate)-cross-linked VDAC, these channel properties could be reverted to those of the native VDAC by cleavage of the cross-linking. Cross-linking of VDAC reconstituted into liposomes inhibited the release of the proteoliposome-encapsulated cytochrome c. Moreover, encapsulated, but not soluble cytochrome c induced oligomerization of liposome-reconstituted VDAC. Thus the results indicate that VDAC exists in a dynamic equilibrium between dimers and tetramers and suggest that oligomeric VDAC may be involved in mitochondria-mediated apoptosis.


2015 ◽  
Vol 40 (6) ◽  
pp. 565-574 ◽  
Author(s):  
Aline Isabel da Silva ◽  
Glauber Ruda Feitoza Braz ◽  
Reginaldo Silva-Filho ◽  
Anderson Apolonio Pedroza ◽  
Diorginis Soares Ferreira ◽  
...  

Recent investigations have focused on the mitochondrion as a direct drug target in the treatment of metabolic diseases (obesity, metabolic syndrome). Relatively few studies, however, have explicitly investigated whether drug therapies aimed at changing behavior by altering central nervous system (CNS) function affect mitochondrial bioenergetics, and none has explored their effect during early neonatal development. The present study was designed to evaluate the effects of chronic treatment of newborn male rats with the selective serotonin reuptake inhibitor fluoxetine on the mitochondrial bioenergetics of the hypothalamus and skeletal muscle during the critical nursing period of development. Male Wistar rat pups received either fluoxetine (Fx group) or vehicle solution (Ct group) from the day of birth until 21 days of age. At 60 days of age, mitochondrial bioenergetics were evaluated. The Fx group showed increased oxygen consumption in several different respiratory states and reduced production of reactive oxygen species, but there was no change in mitochondrial permeability transition pore opening or oxidative stress in either the hypothalamus or skeletal muscle. We observed an increase in glutathione S-transferase activity only in the hypothalamus of the Fx group. Taken together, our results suggest that chronic exposure to fluoxetine during the nursing phase of early rat development results in a positive modulation of mitochondrial respiration in the hypothalamus and skeletal muscle that persists into adulthood. Such long-lasting alterations in mitochondrial activity in the CNS, especially in areas regulating appetite, may contribute to permanent changes in energy balance in treated animals.


2002 ◽  
Vol 22 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Yoshihide Tsujimoto

An increase in the permeability of outer mitochondrial membrane is central to apoptotic cell death, and results in the release of several apoptogenic factors such as cytochrome c into the cytoplasm to activate downstream destructive programs. The voltage-dependent anion channel (VDAC or mitochondrial porin) plays an essential role in disrupting the mitochondrial membrane barrier and is regulated directly by members of the Bcl-2 family proteins. Anti-apoptotic Bcl-2 family members interact with and close the VDAC, whereas some, but not all, proapoptotic members interact with VDAC to open protein-conducting pore through which apoptogenic factors pass. Although the VDAC is involved directly in breaking the mitochondrial membrane barrier and is a known component of the permeability transition pore complex, VDAC-dependent increase in outer membrane permeability can be independent of the permeability transition event such as mitochondrial swelling followed by rupture of the outer mitochondrial membrane. VDAC interacts not only with Bcl-2 family members but also with proteins such as gelsolin, an actin regulatory protein, and appears to be a convergence point for a variety of cell survival and cell death signals.


Sign in / Sign up

Export Citation Format

Share Document