ROCK2 associates with lectin-like oxidized LDL receptor-1 and mediates oxidized LDL-induced IL-8 production

2010 ◽  
Vol 298 (5) ◽  
pp. C1180-C1187 ◽  
Author(s):  
Mark D. Mattaliano ◽  
Joe Wooters ◽  
Heather H. Shih ◽  
Janet E. Paulsen

Oxidatively modified low-density lipoprotein (OxLDL) is a contributing factor of endothelial dysfunction, an early cellular event during atherogenesis. In endothelial cells, OxLDL has been shown to stimulate proinflammatory responses, increase lipid accumulation, and induce the expression of adhesion and extracellular matrix degrading molecules. The primary receptor for OxLDL on endothelial cells has been identified as a member of the scavenger receptor family called lectin-like OxLDL receptor-1 (LOX-1). A number of studies on LOX-1 have implicated its role in multiple cardiovascular diseases including atherosclerosis. To better understand the molecular mechanisms underlying the role of LOX-1 in endothelial cells, we identified interacting proteins in an affinity-purified LOX-1 receptor complex from human aortic endothelial HAECT cells by mass spectrometry. Two molecules involved in Rho signaling pathway, ARHGEF1 and ROCK2, were identified, and their associations with LOX-1 were confirmed in reciprocal immunoprecipitation studies. Particularly, ROCK2 was found to dynamically associate with LOX-1 in the presence of OxLDL. In addition, OxLDL treatment stimulated ROCK2 catalytic activity, and ROCK2 inhibition attenuated NF-κB activation and IL-8 production resulting from OxLDL activation of LOX-1. In summary, a functional proteomics approach has enabled us to identify novel LOX-1 interactors that potentially contribute to the cellular and signaling functions of LOX-1.

Endocrinology ◽  
2012 ◽  
Vol 153 (7) ◽  
pp. 3405-3415 ◽  
Author(s):  
Yang Qiu ◽  
Tomoko Tanaka ◽  
Hajime Nawata ◽  
Toshihiko Yanase

The mechanisms involved in the antiatherosclerotic effects of androgens are unclear. Although lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in endothelial cells plays critical roles in atherosclerosis, the effects of androgens on endothelial LOX-1 expression has not been examined. Therefore, to investigate the effects of dihydrotestosterone (DHT) on LOX-1 expression in rabbit aortic endothelial cells and cultured human aortic endothelial cells (HAEC), pellets containing DHT or placebo were sc implanted into 26 male New Zealand white rabbits at the time of castration or sham operation. The rabbits were then fed a high-cholesterol diet (HCD) for 2 wk. Microscopic examination of the aortic arch revealed that DHT significantly reduced HCD-induced LOX-1 expression in endothelial cells compared with placebo. In cultured HAEC, DHT at concentrations above 10−9 to 10−7 mol/liter inhibited TNFα-induced LOX-1 mRNA and protein expression. Deletion and mutation analysis of human LOX-1 promoter-luciferase constructs transfected into HAEC with an androgen receptor (AR) expression plasmid revealed that the 12-O-tetradecanoylphorbol-13-acetate (TPA) response element (TRE; nucleotides −60/−53) contributed to the inhibitory effects of DHT on TNFα-induced LOX-1 expression. Chromatin immunoprecipitation (ChIP) and re-ChIP assays revealed that TNFα- and TPA-dependent enrichment of p65 and phosphorylated c-Jun in the TRE chromatin region was inhibited by DHT-AR. Consistent with these results, DHT also suppressed TPA-induced expression of LOX-1. In conclusion, DHT exerts antiatherosclerotic effects by suppressing endothelial LOX-1 expression. This effect is partly mediated by the suppression of nuclear factor-κB- and activator protein 1-dependent activation of the LOX-1 promoter.


2015 ◽  
Vol 309 (4) ◽  
pp. L425-L434 ◽  
Author(s):  
Angelia D. Lockett ◽  
Daniela N. Petrusca ◽  
Matthew J. Justice ◽  
Christophe Poirier ◽  
Karina A. Serban ◽  
...  

In addition to exerting a potent anti-elastase function, α-1 antitrypsin (A1AT) maintains the structural integrity of the lung by inhibiting endothelial inflammation and apoptosis. A main serpin secreted in circulation by hepatocytes, A1AT requires uptake by the endothelium to achieve vasculoprotective effects. This active uptake mechanism, which is inhibited by cigarette smoking (CS), involves primarily clathrin- but also caveola-mediated endocytosis and may require active binding to a receptor. Because circulating A1AT binds to high-density lipoprotein (HDL), we hypothesized that scavenging receptors are candidates for endothelial uptake of the serpin. Although the low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) internalizes only elastase-bound A1AT, the scavenger receptor B type I (SR-BI), which binds and internalizes HDL and is modulated by CS, may be involved in A1AT uptake. Transmission electron microscopy imaging of colloidal gold-labeled A1AT confirmed A1AT endocytosis in both clathrin-coated vesicles and caveolae in endothelial cells. SR-BI immunoprecipitation identified binding to A1AT at the plasma membrane. Pretreatment of human lung microvascular endothelial cells with SR-B ligands (HDL or LDL), knockdown of SCARB1 expression, or neutralizing SR-BI antibodies significantly reduced A1AT uptake by 30–50%. Scarb1 null mice exhibited decreased A1AT lung content following systemic A1AT administration and reduced lung anti-inflammatory effects of A1AT supplementation during short-term CS exposure. In turn, A1AT supplementation increased lung SR-BI expression and modulated circulating lipoprotein levels in wild-type animals. These studies indicate that SR-BI is an important mediator of A1AT endocytosis in pulmonary endothelium and suggest a cross talk between A1AT and lipoprotein regulation of vascular functions.


1998 ◽  
Vol 334 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Hiroshi YOSHIDA ◽  
Nonna KONDRATENKO ◽  
Simone GREEN ◽  
Daniel STEINBERG ◽  
Oswald QUEHENBERGER

A new receptor for oxidized low-density lipoprotein (LDL), lectin-like oxidized LDL receptor-1 (LOX-1), has recently been cloned from bovine endothelial cells and human lung. A limited tissue-distribution study suggested that the protein was mainly produced by the vascular endothelium. In the present study we demonstrate that LOX-1 is also expressed in macrophages, where it may function as a scavenger receptor. LOX-1 was not detected in undifferentiated THP-1 cells or in freshly isolated human blood monocytes. However, mature human monocyte-derived macrophages and differentiated THP-1 cells showed high levels of LOX-1 transcripts. Consistent with these results, immunofluorescence staining and FACS analysis demonstrated that LOX-1 protein is expressed on the plasma membrane of macrophages. Western-blot analysis of membranes from macrophages (but not those from monocytes) identified a single band, with an apparent molecular mass of about 40 kDa, that displayed oxidized LDL-binding activity. These results suggest that differentiation induces the expression of LOX-1 in macrophages, where it may play a role as a scavenger receptor and/or a receptor for oxidized LDL.


2019 ◽  
Vol 15 (3) ◽  
pp. 213-223 ◽  
Author(s):  
Rabia Nabi ◽  
Sahir Sultan Alvi ◽  
Mohd. Saeed ◽  
Saheem Ahmad ◽  
Mohammad Salman Khan

Introduction: Diabetes Mellitus (DM) acts as an absolute mediator of cardiovascular risk, prompting the prolonged occurrence, size and intricacy of atherosclerotic plaques via enhanced Advanced Glycation Endproducts (AGEs) formation. Moreover, hyperglycemia is associated with enhanced glyco-oxidized and oxidized Low-Density Lipoprotein (LDL) possessing greater atherogenicity and decreased the ability to regulate HMG-CoA reductase (HMG-R). Although aminoguanidine (AG) prevents the AGE-induced protein cross-linking due to its anti-glycation potential, it exerts several unusual pharmaco-toxicological effects thus restraining its desirable therapeutic effects. HMG-R inhibitors/statins exhibit a variety of beneficial impacts in addition to the cholesterol-lowering effects. Objective: Inhibition of AGEs interaction with receptor for AGEs (RAGE) and glyco-oxidized-LDL by HMG-R inhibitors could decrease LDL uptake by LDL-receptor (LDL-R), regulate cholesterol synthesis via HMG-R, decrease oxidative and inflammatory stress to improve the diabetes-associated complications. Conclusion: Current article appraises the pathological AGE-RAGE concerns in diabetes and its associated complications, mainly focusing on the phenomenon of both circulatory AGEs and those accumulating in tissues in diabetic nephropathy, diabetic neuropathy, and diabetic retinopathy, discussing the potential protective role of HMG-R inhibitors against diabetic complications.


2020 ◽  
Author(s):  
Li Lin ◽  
Ning Zhou ◽  
Le Kang ◽  
Qi Wang ◽  
Jian Wu ◽  
...  

Oxidized low-density lipoprotein (Ox-LDL) can induce cardiac hypertrophy, but the mechanism is still unclear. Here we elucidate the role of angiotensin II (AngII) receptor (AT1-R) in Ox-LDL-induced cardiomycyte hypertrophy. Inhibition of Ox-LDL receptor LOX-1 and AT1-R rather than AngII abolished Ox-LDL-induced hypertrophic responses. Similar results were obtained from the heart of mice lacking endogenous Ang II and their cardiomyocytes. Ox-LDL but not AngII induced binding of LOX-1 to AT1-R, and the inhibition of LOX-1 or AT1-R rather than AngII abolished the association of these two receptors. Ox-LDL-induced ERKs phosphorylation in LOX-1 and AT1-R-overexpression cells and the binding of both receptors were suppressed by the mutants of LOX-1 (Lys266Ala/Lys267Ala) or AT1-R (Glu257Ala), however, the AT1-R mutant lacking Gq protein-coupling ability only abolished the ERKs phosphorylation. The phosphorylation of ERKs induced by Ox-LDL in LOX-1 and AT1-R-overexpression cells was abrogated by Gq protein inhibitor but not by Jak2, Rac1 and RhoA inhibitors. Therefore, the direct interaction between LOX-1 and AT1-R and the downstream Gq protein activation are important mechanisms for Ox-LDL- but not AngII-induced cardiomyocyte hypertrophy


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Po-Yuan Chang ◽  
Jou-Hsiang Pai ◽  
Yu-Sheng Lai ◽  
Shao-Chun Lu

Electronegative low-density lipoprotein (LDL(-)) has been found in the plasma of familial hypercholesterolemia and acute myocardial infarction and has been implicated in atherosclerosis and cardiovascular disease. However, less is known about the involvement of LDL(-) in atherosclerosis-related inflammation. This study aims at investigating the inducibility of LDL(-) by atherogenic diet in rabbits and at exploring the proinflammatory potential of the diet-induced LDL(-) in macrophages. Rabbits were fed with an atherogenic diet; LDL was isolated from plasma by NaBr density gradient ultracentrifugation and was then resolved into nLDL and LDL(-) by anion-exchange chromatography. Isolated nLDL and LDL(-) were directly used or incubated with 10 μM CuSO4 for 24 h to produce copper- (Cu-) ox-nLDL and Cu-ox-LDL(-). The effects of these LDLs on inflammation were evaluated in THP-1-derived macrophages. Macrophages were treated with nLDL, LDL(-), and extensively oxidized LDL (ox-LDL), then the levels of interleukin- (IL-) 1β, IL-6, and tumor necrosis factor- (TNF-) α in a culture medium were determined by ELISA, and the levels of total and phosphorylated IκB, p65, p38, JNK, and ERK in cell lysates were determined by Western blotting. The LDL(-) induced significantly higher levels of IL-1β, IL-6, and TNF-α in the medium. The levels of phosphorylated/total IκB, p65, p38, JNK, and ERK were also upregulated by LDL(-). In contrast, nLDL, Cu-ox-nLDL, and Cu-ox-LDL(-) exhibited much less effect. Knockdown of lectin-type oxidized LDL receptor- (LOX-) 1 resulted in significant reduction in LDL(-)-induced IL-1β, IL-6, and TNF-α. In addition, these LDL(-) effects were also markedly attenuated by inhibition of NF-κB and ERK1/2. The data suggested that LDL(-) induced inflammation through LOX-1-, NF-κB-, and ERK1/2-dependent pathways. Taken together, our results show that rabbits fed with atherogenic diet produce a highly proinflammatory LDL(-) that is more potent in inducing inflammation than nLDL and extensively oxidize LDL in macrophages. The results thus provide a novel link between diet-induced hypercholesterolemia and inflammation.


1984 ◽  
Vol 218 (1) ◽  
pp. 81-86 ◽  
Author(s):  
R Blomhoff ◽  
W Eskild ◽  
T Berg

Denatured or modified proteins (including albumin and low-density lipoprotein) are catabolized in vitro via scavenger receptors. We have studied the distribution of formaldehyde-denatured albumin in rat liver cells after intravenous injection of tracer doses of the protein. At 12 min after injection, most of the formaldehyde-denatured albumin (about 70% of the injected dose) was recovered in liver endothelial cells. Furthermore, isolated liver endothelial cells in suspension and in surface culture took up formaldehyde-denatured albumin by receptor-mediated endocytosis. Our data indicate that the scavenger receptor in liver is mainly located on the endothelial cells. Implications for the catabolism of low-density lipoproteins are discussed.


2007 ◽  
Vol 55 (25) ◽  
pp. 10437-10445 ◽  
Author(s):  
Yih-Shou Hsieh ◽  
Wu-Hsien Kuo ◽  
Ta-Wei Lin ◽  
Horng-Rong Chang ◽  
Teseng-His Lin ◽  
...  

2009 ◽  
Vol 420 (2) ◽  
pp. 277-281 ◽  
Author(s):  
Markus K. Muellner ◽  
Sabine M. Schreier ◽  
Hilde Laggner ◽  
Marcela Hermann ◽  
Harald Esterbauer ◽  
...  

LOOHs (lipid hydroperoxides) in oxLDL [oxidized LDL (low-density lipoprotein)] are potentially atherogenic compounds. Recently, H2S was identified as the third endogenous gasotransmitter in the vasculature. H2O2 is known to be destroyed by H2S. Assuming that H2S may also react with LOOHs, the results show that H2S can destroy LOOHs in oxLDL. The ability of LOOH-enriched LDL to induce HO-1 (haem oxygenase 1) in endothelial cells was abolished by H2S pretreatment. HPLC analysis showed that 9-HPODE [(9S)-hydroperoxy-(10E,12Z)-octadecadienoic acid], a compound found in oxLDL, was reduced to 9-HODE [(9S)-hydroxy-(10E,12Z)-octadecadienoic acid] in the presence of H2S. Thus H2S may act as an antiatherogenic agent by reducing LOOHs to the less reactive LOHs and could abrogate the pathobiological activity of oxLDL.


Sign in / Sign up

Export Citation Format

Share Document