Troglitazone acutely inhibits protein synthesis in endothelial cells via a novel mechanism involving protein phosphatase 2A-dependent p70 S6 kinase inhibition

2006 ◽  
Vol 291 (2) ◽  
pp. C317-C326 ◽  
Author(s):  
Du-Hyong Cho ◽  
Yoon Jung Choi ◽  
Sangmee Ahn Jo ◽  
Jungsang Ryou ◽  
Jin Yi Kim ◽  
...  

Thiazolidinediones (TZDs), synthetic peroxisome proliferator-activated receptor γ (PPARγ) ligands, have been implicated in the inhibition of protein synthesis in a variety of cells, but the underlying mechanisms remain obscure. We report that troglitazone, the first TZD drug, acutely inhibited protein synthesis by decreasing p70 S6 kinase (p70S6K) activity in bovine aortic endothelial cells (BAEC). This inhibition was not accompanied by decreased phosphorylation status or in vitro kinase activity of mammalian target of rapamycin (mTOR). Furthermore, cotreatment with rapamycin, a specific mTOR inhibitor, and troglitazone additively inhibited both p70S6K activity and protein synthesis, suggesting that the inhibitory effects of troglitazone are not mediated by mTOR. Overexpression of the wild-type p70S6K gene significantly reversed the troglitazone-induced inhibition of protein synthesis, indicating an important role of p70S6K. Okadaic acid, a protein phosphatase 2A (PP2A) inhibitor, partially reversed the troglitazone-induced inhibition of p70S6K activity and protein synthesis. Although troglitazone did not alter total cellular PP2A activity, it increased the physical association between p70S6K and PP2A, suggesting an underlying molecular mechanism. GW9662, a PPARγ antagonist, did not alter any of the observed inhibitory effects. Finally, we also found that the mTOR-independent inhibitory mechanism of troglitazone holds for the TZDs ciglitazone, pioglitazone, and rosiglitazone, in BAEC and other types of endothelial cells tested. In conclusion, our data demonstrate for the first time that troglitazone (and perhaps other TZDs) acutely decreases p70S6K activity through a PP2A-dependent mechanism that is independent of mTOR and PPARγ, leading to the inhibition of protein synthesis in endothelial cells.

1999 ◽  
Vol 274 (2) ◽  
pp. 687-692 ◽  
Author(s):  
Ryan S. Westphal ◽  
R. Lane Coffee ◽  
Anthony Marotta ◽  
Steven L. Pelech ◽  
Brian E. Wadzinski

2004 ◽  
Vol 286 (6) ◽  
pp. E1032-E1041 ◽  
Author(s):  
Rengasamy Palanivel ◽  
Rajakrishnan Veluthakal ◽  
Anjaneyulu Kowluru

Previously, we reported that the catalytic subunit of protein phosphatase 2A (PP2Ac) undergoes carboxylmethylation (CML) at its COOH-terminal leucine, and that inhibitors of such a posttranslational modification markedly attenuate nutrient-induced insulin secretion from isolated β-cells. More recent studies have suggested direct inhibitory effects of glucose metabolites on PP2A activity in isolated β-cells, implying that inhibition of PP2A leads to stimulation of insulin secretion. Because the CML of PP2Ac has been shown to facilitate the holoenzyme assembly and subsequent functional activation of PP2A, we investigated putative regulation by glucose of the CML of PP2Ac in insulin-secreting (INS)-1 cells. Our data indicated a marked inhibition by specific intermediates of glucose metabolism (e.g., citrate and phospho enolpyruvate) of the CML of PP2Ac in INS-1 cell lysates. Such inhibitory effects were also demonstrable in intact cells by glucose. Mannoheptulose, an inhibitor of glucose metabolism, completely prevented inhibitory effects of glucose on the CML of PP2Ac. Moreover, glucose-mediated inhibition of the CML of PP2Ac was resistant to diazoxide, suggesting that glucose metabolism and the generation of glucose metabolites might control inhibition of the CML of PP2Ac. A membrane-depolarizing concentration of KCl also induced inhibition of the CML of PP2Ac in intact INS cells. On the basis of these data, we propose that glucose metabolism and increase in intracellular calcium facilitate inhibition of the CML of PP2Ac, resulting in functional inactivation of PP2A. This, in turn, might retain the key signaling proteins of the insulin exocytotic cascade in their phosphorylated state, leading to stimulated insulin secretion.


2000 ◽  
Vol 122 (5) ◽  
pp. 721-727 ◽  
Author(s):  
Christopher J. Witt ◽  
Steven P. Gabel ◽  
Jeremy Meisinger ◽  
Gwendolyn Werra ◽  
Shirley W. Liu ◽  
...  

Tumor neovascularization is necessary for the progressive development of all solid tumors, including head and neck squamous cell carcinomas (HNSCCs). The angiogenic process includes increased endothelial cell motility. Our prior studies have shown the importance of protein phosphatase-2A (PP-2A) in restricting endothelial cell motility. Because motility is regulated by the polymerization/depolymerization of the cellular cytoskeleton, the present study defined the interrelationship between PP-2A and the cytoskeleton during endothelial cell responses to HNSCC-derived angiogenic factors. PP-2A was shown to colocalize with microtubules of unstimulated endothelial cells. However, exposure to HNSCC-derived products resulted in a more diffuse distribution of PP-2A staining and a loss of filamentous tubulin. The feasibility of pharmacologically preventing this cytoskeletal disorganization as a means of blocking tumor-induced angiogenesis was tested. This was accomplished by use of 1α,25-dihydroxyvitamin D3 [1,25 (OH)2D3] and all- trans-retinoic acid to indirectly stimulate PP-2A activity through their capacity to elevated intracellular levels of the second messenger ceramide. Pretreatment of endothelial cells with either 1,25(OH)2D3 or retinoic acid prevented the cytoskeletal disorganization that otherwise occurs in endothelial cells on exposure to HNSCC-derived products. These studies support the feasibility of using elevation of PP-2A to prevent the morphogenic component of the angiogenic process that is stimulated by HNSCC-derived factors.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0137177 ◽  
Author(s):  
Yu-Fan Chuang ◽  
Mei-Chieh Chen ◽  
Shiu-Wen Huang ◽  
Ya-Fen Hsu ◽  
George Ou ◽  
...  

2021 ◽  
Author(s):  
Satya Narayan ◽  
Asif Raza ◽  
Iqbal Mahmud ◽  
Nayeong Koo ◽  
Timothy Garrett ◽  
...  

The treatment of colorectal cancer (CRC) with FOLFOX shows some efficacy, but these tumors quickly develop resistance to this treatment. We have observed an increased phosphorylation of AKT1/mTOR/4EBP1 and levels of p21 in FOLFOX-resistant CRC cells. We have identified a small molecule, NSC49L, that stimulates protein phosphatase 2A (PP2A) activity, downregulates the AKT1/mTOR/4EBP1-axis, and inhibits p21 translation. We have provided evidence that NSC49L- and TRAIL-mediated sensitization is synergistically induced in p21-knockdown CRC cells, which is reversed in p21-overexpressing cells. p21 binds with procaspase 3 and prevents activation of caspase 3. We have shown that TRAIL induces apoptosis through the activation of caspase 3 by NSC49L-mediated downregulation of p21 translation, and thereby cleavage of procaspase 3 into caspase 3. NSC49L does not affect global protein synthesis. These studies provide a mechanistic understanding of NSC49L as a PP2A agonist, and how its combination with TRAIL sensitizes FOLFOX-resistant CRC cells.


Sign in / Sign up

Export Citation Format

Share Document