Granulocyte-macrophage colony-stimulating factor increases l-arginine transport through the induction of CAT2 in bone marrow-derived macrophages

2006 ◽  
Vol 290 (5) ◽  
pp. C1364-C1372 ◽  
Author(s):  
Lorena Martín ◽  
Mónica Comalada ◽  
Luc Marti ◽  
Ellen I. Closs ◽  
Carol L. MacLeod ◽  
...  

l-Arginine transport is crucial for macrophage activation because it supplies substrate for the key enzymes nitric oxide synthase 2 and arginase I. These enzymes participate in classic and alternative activation of macrophages, respectively. Classic activation of macrophages is induced by type I cytokines, and alternative activation is induced by type II cytokines. The granulocyte macrophage colony-stimulating factor (GM-CSF), in addition to inducing proliferation and differentiation of macrophages, activates arginase I, but its action on l-arginine transport is unknown. We studied the l-arginine transporters that are active in mouse primary bone marrow-derived macrophages (BMM) and examined the effect of GM-CSF treatment on transport activities. Under basal conditions, l-arginine entered mainly through system y+L (>75%). The remaining transport was explained by system y+ (<10%) and a diffusion component (10–15%). In response to GM-CSF treatment, transport activity increased mostly through system y+ (>10-fold), accounting for about 40% of the total l-arginine transport. The increase in y+ activity correlated with a rise in cationic amino acid transporter (CAT)-2 mRNA and protein. Furthermore, GM-CSF induced an increase in arginase activity and in the conversion of l-arginine to ornithine, citrulline, glutamate, proline, and polyamines. BMM obtained from CAT2-knockout mice responded to GM-CSF by increasing arginase activity and the expression of CAT1 mRNA, which also encodes system y+ activity. Nonetheless, the increase in CAT1 activity only partially compensated the lack of CAT2 and l-arginine metabolism was hardly stimulated. We conclude that BMM present mainly y+L activity and that, in response to GM-CSF, l-arginine transport augments through CAT2, thereby increasing the availability of this amino acid to the cell.

2008 ◽  
Vol 295 (1) ◽  
pp. L114-L122 ◽  
Author(s):  
Megan N. Ballinger ◽  
Leah L. N. Hubbard ◽  
Tracy R. McMillan ◽  
Galen B. Toews ◽  
Marc Peters-Golden ◽  
...  

Impaired host defense post-bone marrow transplant (BMT) is related to overproduction of prostaglandin E2(PGE2) by alveolar macrophages (AMs). We show AMs post-BMT overproduce granulocyte-macrophage colony-stimulating factor (GM-CSF), whereas GM-CSF in lung homogenates is impaired both at baseline and in response to infection post-BMT. Homeostatic regulation of GM-CSF may occur by hematopoietic/structural cell cross talk. To determine whether AM overproduction of GM-CSF influenced immunosuppression post-BMT, we compared mice that received BMT from wild-type donors (control BMT) or mice that received BMT from GM-CSF−/− donors (GM-CSF−/− BMT) with untransplanted mice. GM-CSF−/− BMT mice were less susceptible to pneumonia with Pseudomonas aeruginosa compared with control BMT mice and showed antibacterial responses equal to or better than untransplanted mice. GM-CSF−/− BMT AMs displayed normal phagocytosis and a trend toward enhanced bacterial killing. Surprisingly, AMs from GM-CSF−/− BMT mice overproduced PGE2, but expression of the inhibitory EP2receptor was diminished. As a consequence of decreased EP2receptor expression, we found diminished accumulation of cAMP in response to PGE2stimulation in GM-CSF−/− BMT AMs compared with control BMT AMs. In addition, GM-CSF−/− BMT AMs retained cysteinyl leukotriene production and normal TNF-α response compared with AMs from control BMT mice. GM-CSF−/− BMT neutrophils also showed improved bacterial killing. Although genetic ablation of GM-CSF in hematopoietic cells post-BMT improved host defense, transplantation of wild-type bone marrow into GM-CSF−/− recipients demonstrated that parenchymal cell-derived GM-CSF is necessary for effective innate immune responses post-BMT. These results highlight the complex regulation of GM-CSF and innate immunity post-BMT.


Blood ◽  
1995 ◽  
Vol 86 (7) ◽  
pp. 2526-2533 ◽  
Author(s):  
L Yang ◽  
YC Yang

Abstract Interactions between different cytokines, extracellular matrix components, and various cell types inside the bone marrow microenvironment are believed to play important roles in the regulation of hematopoiesis. We observed that both interleukin-1 (IL-1) and 12-O- tetradecanoylphorbol-13-acetate (TPA) can stimulate the expression of IL-11 and granulocyte-macrophage colony-stimulating factor (GM-CSF) genes in a primate bone marrow stromal fibroblast cell line, PU-34. We also found that IL-1 or TPA-stimulated IL-11 and GM-CSF expression in PU-34 cells can be abolished by heparin, a class of molecules related to extracellular matrix components, glycosaminoglycans. Because the growth inhibitory signals provided by extracellular factors were less understood, the mechanisms of heparin inhibition of IL-11 and GM-CSF gene expression were further investigated. Our data demonstrate for the first time that heparin did not alter the transcription of endogenous IL-11 and GM-CSF genes or an exogenous IL-11 promoter construct containing an AP-1 sequence. Instead, heparin facilitated the degradation of the corresponding mRNAs. Through RNA gel shift assays, heparin-mediated mRNA destabilization was tentatively linked to its competition for mRNA binding proteins both in the cell-free system and in intact cells. Collectively, our findings suggest that varying degrees of heparin inhibition may provide a novel mechanism for the regulation of cytokine expression during the growth and differentiation of different lineages of hematopoietic cells.


Blood ◽  
1989 ◽  
Vol 74 (5) ◽  
pp. 1491-1498 ◽  
Author(s):  
S Vadhan-Raj ◽  
HE Broxmeyer ◽  
G Spitzer ◽  
A LeMaistre ◽  
S Hultman ◽  
...  

Abstract A complete hematologic remission was achieved in a patient with therapy- related preleukemia and transfusion-dependent pancytopenia after treatment with recombinant human granulocyte-macrophage colony- stimulating factor (GM-CSF). The patient remained in remission for nearly 1 year despite the discontinuation of GM-CSF treatment. Several lines of evidence suggest that normal hematopoiesis was restored after GM-CSF treatment. First, the cytogenetic anomaly, which was present before GM-CSF, completely disappeared after three cycles of treatment. Cytogenetic conversion was documented by conventional karyotypic evaluation of mitotic bone marrow cell preparations as well as by premature chromosome condensation analysis of the nonmitotic cells of bone marrow and peripheral blood. Second, the growth pattern and cycle status of bone marrow granulocyte-macrophage (CFU-GM) and erythroid (BFU-E) progenitor cells were found to be normal during remission. Third, X chromosome-linked restriction fragment length polymorphism- methylation analysis of DNA from mononuclear cells (greater than 80% lymphocytes) and mature myeloid elements showed a polyclonal pattern. These findings suggest that restoration of hematopoiesis in this patient after GM-CSF treatment may have resulted from suppression of the abnormal clone and a selective growth advantage of normal elements.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3829-3840 ◽  
Author(s):  
Xiaowu Zhang ◽  
Ruibao Ren

Abstract The bcr-abl oncogene plays a critical role in causing chronic myelogenous leukemia (CML). Effective laboratory animal models of CML are needed to study the molecular mechanisms by which thebcr-abl oncogene acts in the disease progression of CML. We used a murine stem cell retroviral vector (MSCV) to transduce thebcr-abl/p210 oncogene into mouse bone marrow cells and found that expression of Bcr-Abl/p210 induced a myeloproliferative disorder that resembled the chronic phase of human CML in 100% of bone marrow transplanted mice in about 3 weeks. This CML-like disease was readily transplanted to secondary recipient mice. Multiple clones of infected cells were expanded in the primary recipients, but the leukemia was primarily monoclonal in the secondary recipient mice. Mutation analysis demonstrated that the protein tyrosine kinase activity of Bcr-Abl/p210 was essential for its leukemogenic potential in vivo. Interestingly, we found that the leukemic cells expressed excess interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in the diseased mice. These studies demonstrate that expression of Bcr-Abl can induce a CML-like leukemia in mice much more efficiently and reproducibly than in previously reported mouse CML models, probably due to efficient expression in the correct target cell(s). Our first use of this model for analysis of the molecular mechanisms involved in CML raises the possibility that excess expression of hematopoietic growth factors such as IL-3 and GM-CSF may contribute to the clinical phenotype of CML.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3829-3840 ◽  
Author(s):  
Xiaowu Zhang ◽  
Ruibao Ren

The bcr-abl oncogene plays a critical role in causing chronic myelogenous leukemia (CML). Effective laboratory animal models of CML are needed to study the molecular mechanisms by which thebcr-abl oncogene acts in the disease progression of CML. We used a murine stem cell retroviral vector (MSCV) to transduce thebcr-abl/p210 oncogene into mouse bone marrow cells and found that expression of Bcr-Abl/p210 induced a myeloproliferative disorder that resembled the chronic phase of human CML in 100% of bone marrow transplanted mice in about 3 weeks. This CML-like disease was readily transplanted to secondary recipient mice. Multiple clones of infected cells were expanded in the primary recipients, but the leukemia was primarily monoclonal in the secondary recipient mice. Mutation analysis demonstrated that the protein tyrosine kinase activity of Bcr-Abl/p210 was essential for its leukemogenic potential in vivo. Interestingly, we found that the leukemic cells expressed excess interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in the diseased mice. These studies demonstrate that expression of Bcr-Abl can induce a CML-like leukemia in mice much more efficiently and reproducibly than in previously reported mouse CML models, probably due to efficient expression in the correct target cell(s). Our first use of this model for analysis of the molecular mechanisms involved in CML raises the possibility that excess expression of hematopoietic growth factors such as IL-3 and GM-CSF may contribute to the clinical phenotype of CML.


1996 ◽  
Vol 183 (6) ◽  
pp. 2657-2662 ◽  
Author(s):  
R Nishinakamura ◽  
R Wiler ◽  
U Dirksen ◽  
Y Morikawa ◽  
K Arai ◽  
...  

Mice mutant for granulocyte macrophage colony-stimulating factor (GM-CSF) or the common receptor component (beta c) for GM-CSF, interleukin (IL)-3, and IL-5 exhibit a lung disorder similar to human pulmonary alveolar proteinosis, a rare disease with congenital, infantile, and adult forms. Bone marrow transplantation and hematopoietic reconstitution of beta c mutant mice with wild-type bone marrow reversed the established disease state in the lungs, defining this disease as hematopoietic in nature. It is likely that the disease involves alveolar macrophages, as donor myeloid cell engraftment into the lungs of mutant recipient mice correlated with reverting both the disease and an abnormal macrophage morphology seen in the lungs of affected animals. Recombination Activating Gene-2 mutant donor bone marrow, which lacks the potential to develop lymphocytes, reversed the pathology in the lungs to the same extent as whole bone marrow. These data establish that certain lung disorders, if of cell-autonomous hematopoietic origin, can be manipulated by bone marrow transplantation.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
B. Rumore-Maton ◽  
J. Elf ◽  
N. Belkin ◽  
B. Stutevoss ◽  
F. Seydel ◽  
...  

Defects in macrophage colony-stimulating factor (M-CSF) signaling disrupt myeloid cell differentiation in nonobese diabetic (NOD) mice, blocking myeloid maturation into tolerogenic antigen-presenting cells (APCs). In the absence of M-CSF signaling, NOD myeloid cells have abnormally high granulocyte macrophage colony-stimulating factor (GM-CSF) expression, and as a result, persistent activation of signal transducer/activator of transcription 5 (STAT5). Persistent STAT5 phosphorylation found in NOD macrophages is not affected by inhibiting GM-CSF. However, STAT5 phosphorylation in NOD bone marrow cells is diminished if GM-CSF signaling is blocked. Moreover, if M-CSF signaling is inhibited, GM-CSF stimulationin vitrocan promote STAT5 phosphorylation in nonautoimmune C57BL/6 mouse bone marrow cultures to levels seen in the NOD. These findings suggest that excessive GM-CSF production in the NOD bone marrow may interfere with the temporal sequence of GM-CSF and M-CSF signaling needed to mediate normal STAT5 function in myeloid cell differentiation gene regulation.


1987 ◽  
Vol 166 (6) ◽  
pp. 1851-1860 ◽  
Author(s):  
D Caracciolo ◽  
N Shirsat ◽  
G G Wong ◽  
B Lange ◽  
S Clark ◽  
...  

Human macrophage colony-stimulating factor (M-CSF or CSF-1), either in purified or in recombinant form, is able to generate macrophagic colonies in a murine bone marrow colony assay, but only stimulates small macrophagic colonies of 40-50 cells in a human bone marrow colony assay. We report here that recombinant human granulocytic/macrophage colony stimulating factor (rhGM-CSF) at concentrations in the range of picograms enhances the responsiveness of bone marrow progenitors to M-CSF activity, resulting in an increased number of macrophagic colonies of up to 300 cells. Polyclonal antiserum against M-CSF did not alter colony formation of bone marrow progenitors incubated with GM-CSF at optimal concentration (1-10 ng/ml) for these in vitro assays. Thus, GM-CSF at higher concentrations (nanogram range) can by itself, elicit macrophagic colonies, and at lower concentrations (picogram range) acts to enhance the responsiveness of these progenitors to M-CSF.


Blood ◽  
1989 ◽  
Vol 74 (5) ◽  
pp. 1491-1498 ◽  
Author(s):  
S Vadhan-Raj ◽  
HE Broxmeyer ◽  
G Spitzer ◽  
A LeMaistre ◽  
S Hultman ◽  
...  

A complete hematologic remission was achieved in a patient with therapy- related preleukemia and transfusion-dependent pancytopenia after treatment with recombinant human granulocyte-macrophage colony- stimulating factor (GM-CSF). The patient remained in remission for nearly 1 year despite the discontinuation of GM-CSF treatment. Several lines of evidence suggest that normal hematopoiesis was restored after GM-CSF treatment. First, the cytogenetic anomaly, which was present before GM-CSF, completely disappeared after three cycles of treatment. Cytogenetic conversion was documented by conventional karyotypic evaluation of mitotic bone marrow cell preparations as well as by premature chromosome condensation analysis of the nonmitotic cells of bone marrow and peripheral blood. Second, the growth pattern and cycle status of bone marrow granulocyte-macrophage (CFU-GM) and erythroid (BFU-E) progenitor cells were found to be normal during remission. Third, X chromosome-linked restriction fragment length polymorphism- methylation analysis of DNA from mononuclear cells (greater than 80% lymphocytes) and mature myeloid elements showed a polyclonal pattern. These findings suggest that restoration of hematopoiesis in this patient after GM-CSF treatment may have resulted from suppression of the abnormal clone and a selective growth advantage of normal elements.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2745-2756 ◽  
Author(s):  
Hideharu Odai ◽  
Ko Sasaki ◽  
Akihiro Iwamatsu ◽  
Tetsuya Nakamoto ◽  
Hiroo Ueno ◽  
...  

Abstract Grb2/Ash and Shc are the adapter proteins that link tyrosine-kinase receptors to Ras and make tyrosine-kinase functionally associated with receptors and Ras in fibroblasts and hematopoietic cells. Grb2/Ash and Shc have the SH3, SH2, or phosphotyrosine binding domains. These domains bind to proteins containing proline-rich regions or tyrosine-phosphorylated proteins and contribute to the association of Grb2/Ash and Shc with other signaling molecules. However, there could remain unidentified signaling molecules that physically and functionally interact with these adapter proteins and have biologically important roles in the signaling pathways. By using the GST fusion protein including the full length of Grb2/Ash, we have found that c-Cbl and an unidentified 135-kD protein (pp135) are associated with Grb2/Ash. We have also found that they become tyrosine-phosphorylated by treatment of a human leukemia cell line, UT-7, with granulocyte-macrophage colony-stimulating factor (GM-CSF ). We have purified the pp135 by using GST-Grb2/Ash affinity column and have isolated the full-length complementary DNA (cDNA) encoding the pp135 using a cDNA probe, which was obtained by the degenerate polymerase chain reaction based on a peptide sequence of the purified pp135. The cloned cDNA has 3,958 nucleotides that contain a single long open reading frame of 3,567 nucleotides, encoding a 1,189 amino acid protein with a predicted molecular weight of approximately 133 kD. The deduced amino acid sequence reveals that pp135 is a protein that has one SH2, one SH3, and one proline-rich domain. The pp135, which contains two motifs conserved among the inositol polyphosphate-5-phosphatase proteins, was shown to have the inositol polyphosphate-5-phosphatase activity. The pp135 was revealed to associate constitutively with Grb2/Ash and inducibly with Shc using UT-7 cells stimulated with GM-CSF. In the cell lines derived from human chronic myelogenous leukemia, pp135 was constitutively tyrosine-phosphorylated and associated with Shc and Bcr-Abl. These facts suggest that pp135 is a signaling molecule that has a unique enzymatic activity and should play an important role in the signaling pathway triggered by GM-CSF and in the transformation of hematopoietic cells caused by Bcr-Abl.


Sign in / Sign up

Export Citation Format

Share Document