Contraction of arterial smooth muscle induced by magnesium ions

1982 ◽  
Vol 242 (1) ◽  
pp. C25-C30 ◽  
Author(s):  
T. Ohhashi ◽  
T. Azuma

Dose-response relationships for Mg2+ in a Mg2+-free bathing solution were obtained with isolated canine femoral arteries. At concentrations less than 5 mM, relaxant responses appeared in the preparations. In a concentration range of 10-20 mM, however, every one of the preparations invariably showed dose-dependent contractions. The relaxant and contractile responses were induced by the action of Mg2+ per se but not by the hyperosmolarity associated with the addition of Mg2+. Neither response was affected by the drugs that inhibited the actions of catecholamine, acetylcholine, serotonin, or histamine. The contractile response was kept unchanged in Ca2+-free Locke's solution and was almost independent of environmental calcium concentrations ranging from 2.2 to 8.2 mM. The contractile response was not affected under the influence of Ca antagonists, verapamil, or Mn2+. The presence of Ba2+ or Sr2+ enhanced the relaxant response and dose dependently suppressed the contractile response. The contractile response was still evoked in smooth muscles that were in the state of K+ contracture. These results suggest the possibility that the contractile action of Mg2+ was mediated by a release of intracellular Ca2+ or exerted directly on the contractile machinery of arterial smooth muscle.

1988 ◽  
Vol 254 (2) ◽  
pp. G210-G216 ◽  
Author(s):  
D. S. Louie ◽  
C. Owyang

Motilin has a stimulating effect on gastrointestinal motility. The mechanism of its action is not known. Direct and neuronal effects have been postulated. To determine if receptors are present on smooth muscle cells we investigated the effect of synthetic porcine motilin and its interaction with acetylcholine on isolated guinea pig gastric smooth muscle cells. Motilin elicited a dose-dependent contraction of gastric smooth muscle cells. Minimal (8.3 +/- 1.3%) and maximal (33.9 +/- 2.4%) responses were observed at 10(-12) and 10(-6) M, respectively. The ED50 of motilin was 10(-9) M. Acetylcholine also elicited a dose-response muscle contraction with a maximal response observed at 10(-7) M. Atropine (10(-7) M) completely inhibited the maximal response to acetylcholine but did not have any effect on the contractile response to motilin. In addition, dibutyryl guanosine 3',5'-cyclic monophosphate (10(-3) M) and substance P antagonist, spantide (10(-4) M), also did not inhibit the action of motilin. Acetylcholine (10(-11) M) shifted the dose-response curve of motilin to the left by 1.5 log units. The maximal response to the combination of motilin (10(-6) M) and acetylcholine (10(-11) M) was 32 +/- 3.2%, which was similar to the maximal response to motilin alone. It is concluded that distinct motilin and muscarinic receptors are present on guinea pig gastric smooth muscle cells. The interaction between motilin and acetylcholine is additive and not potentiative.


1985 ◽  
Vol 5 (8) ◽  
pp. 667-671 ◽  
Author(s):  
M. S. Suleiman

Decreasing extracellular sodium concentration was found to produce a contractile response of rabbit ileal smooth muscle. As the concentration decreases, the amplitude of contraction increases, thus producing a dose-dependent curve. Harmaline, a competitor for sodium, was found to inhibit the sodium gradient-dependent contractions in a dose-dependent manner. The results are interpreted as harmaline inhibiting a Na–Ca exchange mechanism present in ileal smooth muscle.


2001 ◽  
Vol 280 (4) ◽  
pp. H1565-H1580 ◽  
Author(s):  
James K. Hennan ◽  
Jack Diamond

It is generally well accepted that nitrovasodilator-induced relaxation of vascular smooth muscle involves elevation of cGMP and activation of a specific cGMP-dependent protein kinase [protein kinase G (PKG)]. However, the protein targets of PKG and the underlying mechanisms by which this kinase leads to a relaxant response have not been elucidated. Several types of smooth muscle, including rat myometrium and vas deferens, are not relaxed by sodium nitroprusside, even at concentrations that produce marked elevation of cGMP and activation of PKG. The main objective of our studies was to compare PKG-mediated protein phosphorylation in intact rat aorta, rat myometrium, and rat vas deferens using two-dimensional gel electrophoresis. In intact rat aorta, seven PKG substrates were detected during relaxation of the tissue. None of the PKG substrates identified in the rat aorta appeared to be phosphorylated in the myometrium or vas deferens after administration of various cGMP-elevating agents. Thus the failure of the rat myometrium and rat vas deferens to relax in the face of cGMP elevation and PKG activation may be due to a lack of PKG substrate phosphorylation.


1989 ◽  
Vol 66 (2) ◽  
pp. 638-643 ◽  
Author(s):  
T. M. Murphy ◽  
N. M. Munoz ◽  
J. Moss ◽  
J. S. Blake ◽  
M. M. Mack ◽  
...  

We studied the secretory correlates of tracheal smooth muscle contraction caused by platelet-activating factor (PAF) in nine mongrel dogs in vivo. In five dogs, dose-response curves were generated by rapid intra-arterial injection of 10(-10) to 10(-6) mol PAF into the isolated tracheal circulation; tracheal contractile response was measured isometrically in situ. To examine the mechanism by which PAF elicits contraction of canine trachealis, concentrations of serotonin (5-HT) and histamine were assayed in the venous effluent as the arteriovenous difference (AVd) in mediator concentration across the airway for each level of contraction. PAF caused dose-related active tracheal tension to a maximum of 37.2 +/- 5.4 g/cm (10(-6) mol PAF). The AVd in 5-HT increased linearly from 0.20 +/- 0.05 (10(-9) mol PAF) to 3.5 +/- 0.3 ng/ml (10(-6) mol PAF) (P less than 0.005). In contrast, the AVd in histamine was insignificant and did not change with increasing doses of PAF. A positive correlation was obtained between the AVd in 5-HT and active tracheal tension (r = 0.92, P less than 0.001); there was no correlation between AVd in histamine and active tension (r = -0.16). PAF-induced parasympathetic activation was not mediated by 5-HT; contraction elicited by exogenous 5-HT was not affected by muscarinic blockade. We conclude that nonparasympathetically mediated contraction elicited acutely by PAF in dogs results at least in part from secondary release of serotonin and is not mediated by histamine.


1986 ◽  
Vol 251 (5) ◽  
pp. G678-G681 ◽  
Author(s):  
A. Kuwahara ◽  
K. Ozawa ◽  
N. Yanaihara

The present experiments examined the local effects of cholecystokinin-octapeptide (CCK-8) and related peptides on gastric motility of anesthetized dogs. Peptides were injected through the gastroepiploic artery at doses of 1.0, 2.5, 5.0, 10.0, and 20.0 ng/ml. CCK-8 and its analogues (Glt-CCK-8, pGlu-CCK-8, and Suc1-MePhe8-CCK-7) increased gastric smooth muscle contraction in a dose-dependent manner. ED50 of CCK-8 was 2.97 +/- 0.63 ng/ml. Administration of atropine (100–200 micrograms/kg) inhibited the effects of both CCK-8 and pentagastrin; however, hexamethonium (5 mg/kg) failed to block the contractile response induced by CCK-8 and pentagastrin. These results indicate that CCK-8 and related peptides can act as local modulators in controlling the neural regulation of gastric motility.


2003 ◽  
Vol 284 (3) ◽  
pp. H1018-H1027 ◽  
Author(s):  
Nari Kim ◽  
Jin Han ◽  
Euiyong Kim

Although PGF2αaffects contractility of vascular smooth muscles, no studies to date have addressed the electrophysiological mechanism of this effect. The purpose of our investigation was to examine the direct effects of PGF2α on membrane potentials, Ca2+-activated K+ (KCa) channels, delayed rectifier K+ (KV) channels, and L-type Ca2+channels with the patch-clamp technique in single rabbit middle cerebral arterial smooth muscle cells (SMCs). PGF2αsignificantly hyperpolarized membrane potentials and increased the amplitudes of total K+ currents. PGF2αincreased open-state probability but had little effect on the open and closed kinetics of KCa channels. PGF2αincreased the amplitudes of KV currents with a leftward shift of the activation and inactivation curves and a decrease in the activation time constant. PGF2α decreased the amplitudes of L-type Ca2+ currents without any significant change in threshold or apparent reversal potentials. This study provides the first finding that the direct effects of PGF2α on middle cerebral arterial SMCs, at least in part, could attenuate vasoconstriction.


1981 ◽  
Vol 241 (2) ◽  
pp. H117-H128 ◽  
Author(s):  
M. Barany ◽  
K. Barany

In the heart and arterial smooth muscles, several proteins are phosphorylated. This review summarizes our current knowledge about these phosphoproteins and their possible role in the function of these muscles. In the contractile apparatus, the phosphorylation of myosin light chain seems to be an integral part of the contraction cycle of arterial smooth muscle. However, in the heart the relationship between light chain phosphorylation-dehosphorylation and systolic-diastolic states remains open. In the heart, the phosphorylation of the inhibitory subunit of troponin, a myofibrillar protein, parallels the positive inotropic response induced by beta-adrenergic agonists. It seems likely that this phosphorylation is involved in the physiological stimulation of the heart by epinephrine. Cardiac sarcoplasmic reticulum contains a low-molecular-weight protein, phospholamban, the phosphorylation of which is required for Ca2+ transport. Ion fluxes through the heart sarcolemma may also be controlled through membrane protein phosphorylation. Key enzymes of the energy-yielding pathways in the heart, the pyruvate dehydrogenase multienzyme complex and phosphorylase, are turned on and off by phosphorylation-dephosphorylation mechanisms. Our understanding of protein phosphorylation in the heart has advanced greatly. In contrast, with the exception of the myosin light chain, much less is known about the many proteins phosphorylated in arterial smooth muscle.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Vijayapandi Pandy ◽  
Megala Narasingam ◽  
Thubasni Kunasegaran ◽  
Dharmani Devi Murugan ◽  
Zahurin Mohamed

This study examined the effect of methanolic extract ofMorinda citrifoliaLinn. (MMC) and its bioactive principles, scopoletin and rutin, on dopamine- and noradrenaline-evoked contractility in isolated rat vas deferens preparations. MMC (1–40 mg/mL), scopoletin (1–200 μg/mL), and rutin hydrate (0.6–312.6 μg/mL) dose-dependently inhibited the contractility evoked by submaximal concentrations of both dopamine and noradrenaline, respectively. Haloperidol and prazosin, reference dopamine D2, andα1-adrenoceptors antagonists significantly reversed the dopamine- and noradrenaline-induced contractions, respectively, in a dose-dependent manner. Interestingly, MMCper seat higher doses (60–100 mg/mL) showed dose-dependent contractile response in rat vas deferens which was partially inhibited by high doses of haloperidol but not by prazosin. These results demonstrated the biphasic effects of MMC on dopaminergic system; that is, antidopaminergic effect at lower concentrations (<40 mg/mL) and dopaminergic agonistic effect at higher concentrations (>60 mg/mL). However, similar contractile response at high doses of scopoletin (0.5–5 mg/mL) and rutin hydrate (0.5–5 mg/mL)per sewas not observed. Therefore, it can be concluded that the bioactive principles of MMC, scopoletin, and rutin might be responsible for the antidopaminergic and antiadrenergic activities of MMC.


2019 ◽  
Author(s):  
Kawin Padmaja Marconi ◽  
Bhavithra Megan ◽  
Alen Major Venis ◽  
Renu Raj ◽  
Sathya Subramani

AbstractAlpha adrenergic stimulation is known to produce vasoconstriction. We have earlier shown that, in spiral strips of small arteries Phenylephrine (PE) caused vasorelaxation under high nitric oxide (NO) environment. However on further experimentation it was realized that the PE-induced vasorelaxant response occurred only with longitudinal strips of small arteries even under normal NO environment while circular strips showed contraction with PE even under high NO environment. Such PE-induced vasorelaxation of longitudinal strips was blocked by Phentolamine, an alpha-adrenergic receptor blocker. On delineation of specific receptor subtype, PE-induced relaxation was found to be mediated through alpha 1D receptor. However, this phenomenon is specific to small artery, as longitudinal smooth muscle of aorta showed only contractile response to adrenergic stimulation. There is no prior report of longitudinal smooth muscle in small artery up to our knowledge. The results of this study and histological examination of vessel sections suggest the presence of longitudinal smooth muscle in small artery and their relaxant response to alpha adrenergic stimulation is a novel phenomenon.


1975 ◽  
Vol 229 (6) ◽  
pp. 1635-1640 ◽  
Author(s):  
BT Altura ◽  
BM Altura

This study, with isolated rat aortic strips and portal veins, was undertaken to : 1) study the effects, if any, of pentobarbital Na (PTB) (5 x 10(-5) to 2 X 10(-3) M) on reactivity to epinephrine, serotonin, and KCl; 2) determine whether certain concentrations of PTB induce direct actions on aortic strips and portal veins; and 3) gain some insight into how these effects are brought about. The results indicate that PTB can: a) inhibit development of spontaneous mechanical activity in these vessels in anesthetic concentrations; b) dose-dependently attenuate contractions induced by epinephrine, serotonin, and KC1; c) cause a noncompetitive type displacement of the dose response curves of these vasoactive agents; d) attenuate Ca2+- induced contractions of potassium-depolarized aortic strips and portal veins concomitant with a dose-dependent displacement of these dose-response curves to the right; and e) rapidly relax drug as well as Ca2+ -induced contractions of aortas and portal veins. In addition, the data indicate that rat portal venous smooth muscle is more sensitive to the inhibitory actions of PTB than rat aortic smooth muscle. Overall, these data suggest that concentrations of PTB used to induce surgical anesthesia can exert profound depressant effects on at least two different types of vascular smooth muscle that may be related to actions on movement and/or translocation of Ca2+.


Sign in / Sign up

Export Citation Format

Share Document