Effects of forskolin and cyclic nucleotides on isometric force in rat aorta

1986 ◽  
Vol 250 (3) ◽  
pp. C468-C473 ◽  
Author(s):  
E. G. McMahon ◽  
R. J. Paul

The present study was undertaken to determine the extent to which cyclic nucleotide-induced relaxation in the intact rat aorta is mediated at the level of the contractile system. The relaxant effects of the cyclic nucleotide analogues [8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) and dibutyryladenosine 3',5'-cyclic monophosphate (DBcAMP)] and forskolin were examined in both the intact vessel and a Triton X-100-skinned preparation of rat thoracic aorta. Relaxation of a norepinephrine-induced contraction was essentially complete 30 min after the addition of 50 microM 8-BrcGMP [% relaxation = 87.2 +/- 4.4% (n = 4)], 100 microM DBcAMP [98.2 +/- 1.2% (n = 4)], and 1 microM forskolin [107.0 +/- 3.3% (n = 5)]. These same doses were ineffective in relaxing precontracted skinned rat aortic rings compared with the relaxation achieved in the intact vessel. The largest relaxation in the skinned aortas was achieved with the addition of 1 microM forskolin [17.4 +/- 1.5% (n = 4)]. The addition of catalytic subunit of cAMP-dependent protein kinase had no effect on isometric tension in the precontracted skinned aorta. Preincubation with the cyclic nucleotide analogues or forskolin in a low-Ca2+ solution (pCa less than 8) was also ineffective in inhibiting subsequent isometric tension development. Our results suggest that only a very small fraction of the relaxation with cyclic nucleotides and forskolin in the intact rat aorta is due to the action of these agents at the level of the contractile system.

2001 ◽  
Vol 91 (6) ◽  
pp. 2742-2750 ◽  
Author(s):  
Andrew Q. Ding ◽  
John N. Stallone

Recent studies have established that testosterone (Tes) produces acute (nongenomic) vasorelaxation. This study examined the structural specificity of Tes-induced vasorelaxation and the role of vascular smooth muscle (VSM) K+ channels in rat thoracic aorta. Aortic rings from male Sprague-Dawley rats with (Endo+) and without endothelium (Endo−) were prepared for isometric tension recording. In Endo− aortas precontracted with phenylephrine, 5–300 μM Tes produced dose-dependent relaxation from 10 μM (4 ± 1%) to 300 μM (100 ± 1%). In paired Endo+ and Endo− aortas, Tes-induced vasorelaxation was slightly but significantly greater in Endo+ aortas (at 5–150 μM Tes); sensitivity (EC50) of the aorta to Tes was reduced by nearly one-half in Endo− vessels. Based on the sensitivity (EC50) of Endo− aortas, Tes, the active metabolite 5α-dihydrotestosterone, the major excretory metabolites androsterone and etiocholanolone, the nonpolar esters Tes-enanthate and Tes-hemisuccinate (THS), and THS conjugates to BSA (THS-BSA) exhibited relative potencies for vasorelaxation dramatically different from androgen receptor-mediated effects observed in reproductive tissues, with a rank order of THS-BSA > Tes > androsterone = THS = etiocholanolone > dihydrotestosterone ≫ Tes-enanthate. Pretreatment of aortas with 5 mM 4-aminopyridine attenuated Tes-induced vasorelaxation by an average of 44 ± 2% (25–300 μM Tes). In contrast, pretreatment of aortas with other K+ channel inhibitors had no effect. These data reveal that Tes-induced vasorelaxation is a structurally specific effect of the androgen molecule, which is enhanced in more polar analogs that have a lower permeability to the VSM cell membrane, and that the effect of Tes involves activation of K+ efflux through K+channels in VSM, perhaps via the voltage-dependent (delayed-rectifier) K+ channel.


1986 ◽  
Vol 251 (1) ◽  
pp. H127-H132 ◽  
Author(s):  
J. E. Ponce-Hornos ◽  
A. C. Taquini

The effects of changing external Ca concentration ([Ca]o) on contractile parameters and heat production were investigated in the interventricular rabbit septa and the dog papillary muscle. Double reciprocal plots of tension development as a function of [Ca]o yielded half-maximal activation values of 1.04 +/- 0.17 and 2.8 +/- 0.7 mM Ca for the septum and papillary muscle, respectively. Resting heat rate was similar in both preparations, 1.9 +/- 0.08 mW . g-1 for the septum and 1.7 +/- 0.07 mW . g-1 for the papillary muscle, and it was not altered by changes in [Ca]o. Active heat production (Ha) normalized per unit of force developed (19 +/- 1.3 microJ . mN-1 . g-1) for the septum and the dimensionless ratio Ha/(To . lo), (0.30 +/- 0.02) for the papillary muscle, where To is the isometric tension and lo, the muscle length, remained unaltered with changes in [Ca]o. Total heat production per beat normalized per unit of force developed (Ht/T) for the septum and the ratio Ht/(To . lo) for the papillary muscle decreased hyperbolically with [Ca]o. Therefore, as a result of the unaltered economy of the contractile system and the unchanged resting heat rate, muscle economy improves as [Ca]o approaches physiological levels. Further increase in [Ca]o, over the physiological levels, can only slightly improve muscle economy.


1991 ◽  
Vol 260 (2) ◽  
pp. H453-H458 ◽  
Author(s):  
J. N. Stallone ◽  
J. T. Crofton ◽  
L. Share

Previously, we reported that, in the rat, pressor responsiveness to vasopressin (VP) is higher in males than in females during most phases of the estrous cycle. To explore the role of the vasculature in this phenomenon, we examined vascular reactivity to VP in thoracic aortas of male rats and female rats during each phase of the estrous cycle. Aortic rings were prepared from age-matched male and female Sprague-Dawley rats and mounted for isometric tension recording. Maximal response of female aortas to VP (4,246 +/- 163 mg/mg ring dry wt) was more than twice (P less than 0.001) that of male aortas (1,877 +/- 215 mg/mg ring wt). Sensitivity of female aortas to VP was substantially higher (P less than 0.001) than that of male aortas (EC50: 10.9 +/- 0.7 vs. 19.0 +/- 1.6 nM, respectively). Maximal rate of tension development (dT/dtmax) during contraction with VP was nearly twofold higher (P less than 0.01) in female aortas (536 +/- 23 mg/min) than in male aortas (300 +/- 19 mg/min). Maximal response, sensitivity, and dT/dtmax of female aortas did not vary significantly during the estrous cycle. Maximal response of female aortas to phenylephrine (PE; 1,251 +/- 93 mg/mg ring wt) was half that (P less than 0.001) of male aortas (2,546 +/- 194 mg/mg ring wt); sensitivity to PE did not differ significantly (EC50: 0.33 +/- 0.02 vs. 0.38 +/- 0.06 microM, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)


1980 ◽  
Vol 58 (3) ◽  
pp. 243-248 ◽  
Author(s):  
N. Schlageter ◽  
R. A. Janis ◽  
R. T. Gualtieri ◽  
O. Hechter

The effects of oxytocin and methacholine on cyclic nucleotide levels in estrogen-primed rabbit myometrium were studied in the presence and absence of 1-methyl-3-isobutyl xanthine (MIX), a phosphodiesterase inhibitor. In the absence of MIX, methacholine increased guanosine 3′,5′-cyclic monophosphate (cGMP) levels at a time when contraction was decreasing, but had no influence on adenosine 3′,5′-cyclic monophosphate (cAMP) levels. In contrast, oxytocin did not elevate cGMP, but rapidly increased cAMP levels. MIX (1 mM) increased both cAMP and cGMP levels. Oxytocin or methacholine further increased cGMP, indicating activation of guanylate cyclase. Oxytocin- but not methacholine-induced stimulation of guanylate cyclase was abolished in Ca2+-free solution. Oxytocin increased cAMP over the levels produced by MIX alone, whereas methacholine decreased cAMP below the MIX control values; these effects were insensitive to indomethacin. Tissue levels of cGMP and cAMP did not directly correlate with isometric tension. The results also indicate that both oxytocin and methacholine stimulate guanylate cyclase but have opposing effects on adenylate cyclase of rabbit myometrium.


1996 ◽  
Vol 75 (3) ◽  
pp. 1256-1263 ◽  
Author(s):  
T. A. Cummings ◽  
C. Daniels ◽  
S. C. Kinnamon

1. The gigaseal voltage-clamp technique was used to record responses of hamster taste receptor cells to synthetic sweeteners and cyclic nucleotides. Voltage-dependent currents and steady-state currents were monitored during bath exchanges of saccharin, two high-potency sweeteners, 8-chlorophenylthio-adenosine 3',5'-cyclic monophosphate (8cpt-cAMP), and dibutyryl-guanosine 3',5'-cyclic monophosphate (db-cGMP). 2. Of the 237 fungiform taste cells studied, only one in eight was sweet responsive. Outward currents, both voltage-dependent and resting, were reduced by all of the sweeteners tested in sweet-responsive taste cells, whereas these currents were unaffected by sweeteners in sweet-unresponsive taste cells. 3. In every sweet-responsive cell tested, 8cpt-cAMP and db-cGMP mimicked the response to the sweeteners, but neither nucleotide elicited responses in sweet-unresponsive cells. Thus there was a one-to-one correlation between sweet responsivity and cyclic nucleotide responsivity. 4. Sweet responses showed cross adaptation with cyclic nucleotide responses. This indicates that the same ion channel is modulated by sweeteners and cyclic nucleotides. 5. The sweetener- and cyclic nucleotide-blocked current had an apparent reversal potential of -50 mV, which was close to the potassium reversal potential in these experiments. In addition, there was no effect of sweeteners and cyclic nucleotides in the presence of the K+ channel blocker tetraethylammonium bromide (TEA). These data suggest that block of a resting, TEA-sensitive K+ current is the final common step leading to taste cell depolarization during sweet transduction. 6. These data, together with data from a previous study (Cummings et al. 1993), suggest that both synthetic sweeteners and sucrose utilize second-messenger pathways that block a resting K+ conductance to depolarize the taste cell membrane.


1993 ◽  
Vol 265 (6) ◽  
pp. H2073-H2080 ◽  
Author(s):  
J. N. Stallone

In rat thoracic aorta, contractile responses to arginine vasopressin (AVP) are twofold higher in females than in males. To determine the role of the endothelium in this phenomenon, the effects of endothelium removal and inhibition of nitric oxide (NO) synthase and cyclooxygenase were examined in thoracic aortas prepared from male and female Sprague-Dawley rats and mounted for isometric tension recording. Maximal contractile response to AVP was substantially higher in female (4,232 +/- 316 mg/mg ring dry wt) than in male aortas (1,365 +/- 239; P < 0.01). Removal of the endothelium markedly potentiated maximal response to AVP in male aortas (4,100 +/- 422 mg/mg ring wt; P < 0.01); endothelium removal increased sensitivity but not maximal response in female aortas. Inhibition of NO synthase with NG-monomethyl-L-arginine (L-NMMA, 250 microM) doubled maximal contraction to AVP in male aortas (3,175 +/- 193 mg/mg ring wt; P < 0.01); L-NMMA increased sensitivity but not maximal response in female aortas. Inhibition of cyclooxygenase with indomethacin (10 microM) did not alter maximal response to AVP in male aortas but significantly attenuated responses of female aortas (2,816 +/- 306 mg/mg ring wt; P < 0.01). In contrast, maximal contractile response to phenylephrine hydrochloride (PE) was 40% higher in males than in females (P < 0.01); L-NMMA increased both the sensitivity and maximal response to PE to a greater extent in female (3,061 +/- 121 vs. 4,971 +/- 135 mg/mg ring wt; P < 0.01) than in male aortas (4,317 +/- 227 vs. 4,899 +/- 104 mg/mg ring wt; P < 0.01). (ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 252 (5) ◽  
pp. E588-E594
Author(s):  
J. Segal

The present study provides several lines of evidence which indicate that in the rat thymocyte adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5-cyclic monophosphate (cGMP) induce opposing regulatory effects on 2-deoxyglucose (2-DG) uptake; cAMP is stimulatory, whereas cGMP is inhibitory. First, the cyclic nucleotide analogues dibutyryl cAMP (dBcAMP) and dibutyryl cGMP (dBcGMP) produced a dose-related increase and decrease in thymocyte 2-DG uptake, respectively. Second, 3,5,3'-triiodo-L-thyronine (T3) and epinephrine, which increased cellular cAMP concentration but had no effect on cellular cGMP concentration, increased 2-DG uptake in the rat thymocyte. Third, dBcGMP inhibited the stimulatory effects of dBcAMP, T3, and epinephrine on thymocyte 2-DG uptake. Fourth, prostaglandin E1 and the inhibitors of the cyclic nucleotide phosphodiesterases, 3-isobutyl-1-methylxanthine, theophylline, and caffeine, all increased both cellular cAMP and cGMP concentration but had no effect on 2-DG uptake. Insulin did not change cellular cAMP and cGMP concentration, but produced a dose-related increase in 2-DG uptake by the rat thymocyte. From these results I have concluded that in the rat thymocyte cAMP and cGMP produce opposite effects on sugar uptake and that the effect of certain, but not all, agents on thymocyte sugar uptake results from their modulation of cellular cAMP and cGMP concentration.


2006 ◽  
Vol 105 (5) ◽  
pp. 976-983 ◽  
Author(s):  
Y S. Prakash ◽  
Adeyemi Iyanoye ◽  
Binnaz Ay ◽  
Gary C. Sieck ◽  
Christina M. Pabelick

Background Volatile anesthetics produce bronchodilation in part by depleting sarcoplasmic reticulum Ca stores in airway smooth muscle (ASM). Other bronchodilatory drugs are known to act via cyclic nucleotides (cyclic adenosine 3',5'-cyclic monophosphate, cyclic guanosine 3',5'-cyclic monophosphate). Intracellular Ca regulation in ASM involves plasma membrane Ca influx, including that triggered by sarcoplasmic reticulum Ca depletion (store-operated Ca entry [SOCE]). The authors hypothesized that anesthetics and bronchodilatory agents interact in inhibiting SOCE, thus enhancing ASM relaxation. Methods In enzymatically dissociated porcine ASM cells imaged using fluorescence microscopy, sarcoplasmic reticulum Ca was depleted by 1 microm cyclopiazonic acid in 0 extracellular Ca, nifedipine, and potassium chloride (preventing Ca influx through L-type channels and SOCE). Extracellular Ca was rapidly reintroduced to selectively activate SOCE in the presence or absence of 1 minimum alveolar concentration (MAC) halothane, isoflurane, or sevoflurane. Anesthetic interference with SOCE regulation by cyclic nucleotides was examined by activating SOCE in the presence of (1) 1 microm acetylcholine, (2) 100 microm dibutryl cyclic adenosine 3',5'-cyclic monophosphate, or (3) 100 microm 8-bromo-cyclic guanosine 3',5'-cyclic monophosphate. Results SOCE was enhanced by acetylcholine, whereas volatile anesthetics and both cyclic nucleotides partially inhibited Ca influx. Preexposure to 1 or 2 MAC anesthetic (halothane &gt; isoflurane &gt; sevoflurane) inhibited SOCE. Only halothane and isoflurane inhibited acetylcholine-induced augmentation of Ca influx, and significantly potentiated cyclic nucleotide inhibition such that no influx was observed in the presence of anesthetics and cyclic nucleotides. Conclusions These data indicate that volatile anesthetics prevent sarcoplasmic reticulum refilling by inhibiting SOCE and enhancing cyclic nucleotide blunting of Ca influx in ASM. Such interactions likely result in substantial airway relaxation in the presence of both anesthetics and bronchodilatory agents such as beta agonists or nitric oxide.


2000 ◽  
Vol 92 (1) ◽  
pp. 219-219 ◽  
Author(s):  
Vu Huu Vinh ◽  
Taijiro Enoki ◽  
Shinichi Hirata ◽  
Hiroshi Toda ◽  
Masahiro Kakuyama ◽  
...  

Background Volatile anesthetic agents have been shown to have contractile effects in vascular tissues during specific conditions. This study compared contractile effects of halothane and sevoflurane in rat aorta treated with verapamil. This study also tried to elucidate the mechanism of the contraction. Methods Endothelium-denuded rat thoracic aorta was used for recording of isometric tension and measurement of influx of 45Ca2+. All experiments were performed in the presence of verapamil. In recording of tension, rings were precontracted with a submaximum dose of phenylephrine, followed by exposure to halothane or sevoflurane. For measurement of influx of 45Ca2+, rat aortic strips were exposed to phenylephrine and then to additional halothane or sevoflurane. Influx of Ca2+ was estimated by incubating the strips in 45Ca2+-labeled solution for 2 min. Results Halothane (0.5-4.0%) induced contraction in a dose-dependent manner, whereas sevoflurane (1-4%) had no effect on tension. Influx of 45Ca2+ was strongly enhanced by halothane at 1% and 2%, but only slightly at 4%, and was not affected by 1-4% sevoflurane. SK&F 96365, a blocker of voltage-independent Ca2+ channels, abolished contraction and influx of 45Ca2+ by 1% halothane. Depletion of Ca2+ from the sarcoplasmic reticulum with ryanodine or thapsigargin reduced the contraction induced by halothane at 4% but not that at 1% and 2%. Conclusion Halothane is suggested to cause contraction by enhancing influx of Ca2+ via voltage-independent Ca2+ channels at concentrations up to 2% and by inducing release of Ca2+ at 4%. Sevoflurane (1-4%) is devoid of these contractile effects.


2009 ◽  
pp. 521-527 ◽  
Author(s):  
Y-K Wang ◽  
A-J Ren ◽  
X-Q Yang ◽  
L-G Wang ◽  
W-F Rong ◽  
...  

This study aimed to investigate the vasoactivity of sulfur dioxide (SO2), a novel gas identified from vascular tissue, in rat thoracic aorta. The thoracic aorta was isolated, cut into rings, and mounted in organ-bath chambers. After equilibrium, the rings were gradually stretched to a resting tension. Isometric tension was recorded under the treatments with vasoconstrictors, SO2 derivatives, and various drugs as pharmacological interventions. In endothelium-intact aortic rings constricted by 1 μM phenylephrine (PE), SO2 derivatives (0.5 – 8 mM) caused a dosedependent relaxation. Endothelium removal and a NOS inhibitor L-NAME reduced the relaxation to low doses of SO2 derivatives, but not that to relatively high doses (≥ 2 mM). In endotheliumdenuded rings, SO2 derivatives attenuated vasoconstriction induced by high K+ (60 mM) or CaCl2 (0.01-10 mM). The relaxation to SO2 derivatives in PE-constricted rings without endothelium was significantly inhibited by blockers of ATPsensitive K+ (KATP) and Ca2+-activated K+ (KCa) channels, but not by those of voltage-dependent K+ channels, Na+-K+-ATPase or Na+-Ca2+ exchanger. SO2 relaxed vessel tone via endotheliumdependent mechanisms associated with NOS activation, and via endothelium-independent mechanisms dependent on the inhibition of voltage-gated Ca2+ channels, and the opening of KATP and KCa channels.


Sign in / Sign up

Export Citation Format

Share Document