Adrenergically activated Ca2+ increases in brown fat cells: effects of Ca2+, K+, and K channel block

1993 ◽  
Vol 264 (1) ◽  
pp. C217-C228 ◽  
Author(s):  
S. C. Lee ◽  
R. Nuccitelli ◽  
P. A. Pappone

We measured intracellular calcium concentration ([Ca2+]i) during adrenergic stimulation using fura-2 ratio imaging of individual cultured neonatal rat brown fat cells. One micromolar norepinephrine (NE) increased [Ca2+]i from an average resting value of 105 nM to 555 nM in approximately 30 s. [Ca2+]i remained elevated as long as NE was present but returned to resting levels within 2-3 min after NE removal. The response was half maximal at approximately 50 nM NE and was primarily alpha-adrenergic. The sustained, but not the initial, increase in [Ca2+]i required extracellular calcium. Cells stimulated in high-K media had [Ca2+]i responses like those in 0 Ca2+, suggesting that depolarization abrogates calcium influx. Parallel perforated-patch recordings showed that the increase in [Ca2+]i activates a calcium-activated K conductance. Blocking K channels with moderate concentrations of tetraethylammonium (TEA) had only small effects on NE-induced changes in [Ca2+]i, but high concentrations of TEA significantly reduced the response. We conclude that cytoplasmic calcium is modulated by fluxes from both intracellular and extracellular sources and that K channels may not be required for normal short-term [Ca2+]i responses to hormone.

1992 ◽  
Vol 262 (3) ◽  
pp. C678-C681 ◽  
Author(s):  
P. A. Pappone ◽  
M. T. Lucero

Hormonally stimulated brown fat cells are capable of extremely high metabolic rates, making them an excellent system in which to examine the role of plasma membrane ion channels in cell metabolism. We have previously shown that brown fat cell membranes have both voltage-gated and calcium-activated potassium channels (Voltage-gated potassium channels in brown fat cells. J. Gen. Physiol. 93: 451-472, 1989; Membrane responses to norepinephrine in cultured brown fat cells. J. Gen. Physiol. 95: 523-544, 1990). Currents through both the voltage-activated potassium channels, IK,V, and the calcium-activated potassium channels, IK,Ca, can be blocked by the membrane-impermeant K channel blocker tetraethylammonium (TEA). We used microcalorimetric measurements from isolated neonatal rat brown fat cells to assess the role these potassium conductances play in the metabolic response of brown fat cells to adrenergic stimulation. Concentrations of TEA as high as 50 mM, sufficient to block approximately 95% of IK,V and 100% of IK,Ca, had no effect on norepinephrine-stimulated heat production. These results show that neither voltage-gated nor calcium-activated K channels are necessary for a maximal thermogenic response in brown fat cells and suggest that K channels are not involved in maintaining cellular homeostasis during periods of high metabolic activity.


1994 ◽  
Vol 267 (2) ◽  
pp. C349-C356 ◽  
Author(s):  
S. C. Lee ◽  
J. S. Hamilton ◽  
T. Trammell ◽  
B. A. Horwitz ◽  
P. A. Pappone

The activity of the uncoupling protein in brown fat mitochondria is enhanced at alkaline pH, leading to the hypothesis that changes in intracellular pH (pHi) may modulate the thermogenic response to sympathetic stimulation. We employed ratio imaging of the fluorescent dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein to measure pHi in acutely isolated single brown fat cells from hamster and neonatal rat and in cultured rat cells. Basal pHi averaged approximately 7.2 in HCO3- media and 0.1-0.15 pH units lower in nominally HCO3(-)-free media in all cell types. In both HCO3- and HCO3(-)-free media, stimulation with norepinephrine (NE) typically caused an alkalinization of approximately 0.05-0.1 pH units, which was followed by a smaller net acidification occurring primarily after NE was removed. Alkalinization seemed to be mediated predominantly by alpha-adrenergic stimulation, while acidification most often followed beta-adrenergic activation. Similar pHi changes were elicited by NE in rat and hamster cells, but responses were more frequent in hamster cells. Assays of recovery from ammonium prepulse-induced acid loads indicated that rat and hamster cells have both Na(+)-H+ and Na(+)- and HCO3(-)-dependent regulatory systems, while hamster cells have, in addition, a Na(+)-independent recovery mechanism activated at acid pHi. We conclude that alpha-adrenergic alkalinization of brown fat may contribute to the control of thermogenesis.


1987 ◽  
Vol 253 (2) ◽  
pp. C301-C308 ◽  
Author(s):  
N. Mohell ◽  
E. Connolly ◽  
J. Nedergaard

Experimental conditions are described for selective alpha 1- and beta-adrenergic stimulation of the respiration of brown fat cells. The dual agonist norepinephrine was unsuitable as a selective alpha 1-agonist, since unacceptably high concentrations of propranolol were needed to abolish the beta-response. Phenylephrine at 50 microM, in the presence of 5 microM dl-propranolol, was shown to lead to a maximal, selective alpha 1-stimulation, whereas maximal, selective beta-stimulation was achieved with 1 microM isoproterenol in the presence of 5 microM prazosin. The mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) was able to further increase respiration that was already maximally alpha 1-stimulated, but when added before the alpha 1-stimulation, FCCP totally abolished the response. In contrast, FCCP had no effect on the beta-stimulated response. Similarly, oligomycin (an inhibitor of mitochondrial ATP synthesis) inhibited alpha 1-respiration but had a much smaller effect on beta-respiration. Ouabain (an inhibitor of the Na+-K+-ATPase) halved alpha 1-respiration but only induced a small inhibition of beta-respiration. It is concluded that only a small fraction of thermogenesis from beta-adrenergic processes is due to oxidative phosphorylation, whereas alpha 1-respiration is largely due to the oxygen cost of mitochondrial ATP synthesis, and a large fraction of this ATP is apparently used for the restoration of ion gradients.


1990 ◽  
Vol 95 (3) ◽  
pp. 523-544 ◽  
Author(s):  
M T Lucero ◽  
P A Pappone

We used the "perforated-patch" technique (Horn, R., and A. Marty, 1988. Journal of General Physiology. 92:145-159) to examine the effects of adrenergic agonists on the membrane potentials and membrane currents in isolated cultured brown fat cells from neonatal rats. In contrast to our previous results using traditional whole-cell patch clamp, 1-23-d cultured brown fat cells clamped with the perforated patch consistently showed vigorous membrane responses to both alpha- and beta-adrenergic agonists, suggesting that cytoplasmic components essential for the thermogenic response are lost in whole-cell experiments. The membrane responses to adrenergic stimulation varied from cell to cell but were consistent for a given cell. Responses to bath-applied norepinephrine in voltage-clamped cells had three possible components: (a) a fast transient inward current, (b) a slower outward current carried by K+ that often oscillated in amplitude, and (c) a sustained inward current largely by Na+. The fast inward and outward currents were activated by alpha-adrenergic agonists while the slow inward current was mediated by beta-adrenergic agonists. Oscillating outward currents were the most frequently seen response to norepinephrine stimulation. Activation of this current, termed IK,NE, was independent of voltage and seemed to be carried by Ca2(+)-activated K channels since the current oscillated in amplitude at constant membrane potential and gradually decreased when the cells were bathed with calcium-free external solution. IK,NE had a novel pharmacology in that it could be blocked by 4-aminopyridine, tetraethylammonium, apamin, and charybdotoxin. Both IK,NE and the voltage-gated K channels also present in brown fat (Lucero, M. T., and P. A. Pappone, 1989a. Journal of General Physiology. 93:451-472) may play a role in maintaining cellular homeostasis in the face of the high metabolic activity involved in thermogenesis.


1988 ◽  
Vol 254 (6) ◽  
pp. H1200-H1205 ◽  
Author(s):  
G. E. Kirsch ◽  
A. Yatani ◽  
J. Codina ◽  
L. Birnbaumer ◽  
A. M. Brown

A specific guanine nucleotide-binding protein, Gk, is the link by which muscarinic receptors activate atrial potassium channels (Science Wash. DC 235: 207-211, 1987). In adult guinea pigs, the alpha-subunit at picomolar concentrations mediates the holo-G protein effect (Science Wash. DC 236: 442-445, 1987), but in chick embryo it has been reported that the beta gamma-dimer at nanomolar concentrations rather than the alpha-subunit is the effective mediator (Nature Lond. 325: 321-326, 1987). This difference might have a phylogenetic or ontogenetic basis, and the present experiments tested these possibilities. Preactivated alpha k derived from human red blood cell Gk, when applied to the intracellular surface of inside-out membrane patches from the atria of embryonic chick, neonatal rat, and adult guinea pig activated single K+ channel currents. In each case, the alpha k-activated channels had the same single-channel conductance and mean open time as the muscarinic agonist-activated channels. Half-maximal activation was achieved at alpha k-concentrations of 2.4-13.8 pM. Hence, alpha k-activation of these K+ channels is independent of differences in age or species. The detergent 3-[3-cholamidopropyl)-dimethyammoniol]-1-propanesulfonate (CHAPS), which was used by Logothetis et al. (Nature Lond. 325: 321-326, 1987) at 184 microM to suspend the hydrophobic beta gamma-dimers, activated the same currents. We conclude that the effects of the beta gamma-dimer on these K+ channels is unknown and that as we had proposed earlier (Science Wash. DC 236: 442-445, 1987) it is the alpha-subunit that mediates the Gk effect.


1997 ◽  
Vol 273 (2) ◽  
pp. C679-C686 ◽  
Author(s):  
S. C. Lee ◽  
P. A. Pappone

Sympathetic stimulation of brown adipocytes plays a major role in body energy homeostasis by activating energy-wasting pathways. Sympathetic neuronal input initiates a variety of metabolic, developmental, and membrane responses in brown fat cells. Many of these actions are mediated by adrenergic pathways mobilized by released norepinephrine. However, since sympathetic stimulation may also release vesicular ATP, we tested brown fat cells for ATP responses. Micromolar concentrations of extracellular ATP had a number of effects on brown adipocytes. We have shown previously that ATP elicits substantial (average of approximately 30%) increases in cell membrane capacitance (P. A. Pappone and S. C. Lee, J. Gen. Physiol. 108: 393-404, 1996). Here, we show that cytosolic calcium levels were increased by ATP, both through release from intracellular stores and through influx, as assessed by fura 2 imaging. In addition, ATP indirectly activated a nonselective cation conductance that was independent of cytosolic calcium levels in patch voltage-clamped brown fat cells. Similar calcium, conductance, and capacitance responses could be activated by 2-methylthio-ATP and ADP, consistent with mediation by a P2 type purinergic receptor. Calorimetric measurements from cell suspensions showed that ATP increased basal heat production of isolated brown fat cells by approximately 40% but had no effect on the greater than fivefold increase in heat production seen with maximal adrenergic stimulation. These myriad responses to extracellular ATP suggest that P2 receptor-mediated signaling is important in brown adipocyte physiology and that sympathetic stimulation may normally activate purinergic as well as adrenergic pathways in brown fat.


1995 ◽  
Vol 106 (2) ◽  
pp. 231-258 ◽  
Author(s):  
P A Pappone ◽  
S C Lee

The first response of brown adipocytes to adrenergic stimulation is a rapid depolarizing conductance increase mediated by alpha-adrenergic receptors. We used patch recording techniques on cultured brown fat cells from neonatal rats to characterize this conductance. Measurements in perforated patch clamped cells showed that fast depolarizing responses were frequent in cells maintained in culture for 1 d or less, but were seen less often in cells cultured for longer periods. Ion substitution showed that the depolarization was due to a selective increase in membrane chloride permeability. The reversal potential for the depolarizing current in perforated patch clamped cells indicated that intracellular chloride concentrations were significantly higher than expected if chloride were passively distributed. The chloride conductance could be activated by increases in intracellular calcium, either by exposing intact cells to the ionophore A23187 or by using pipette solutions with free calcium levels of 0.2-1.0 microM in whole-cell configuration. The chloride conductance did not increase monotonically with increases in intracellular calcium, and going whole cell with pipette-free calcium concentrations > or = 10 microM rapidly inactivated the current. The chloride currents ran down in whole-cell recordings using intracellular solutions of various compositions, and were absent in excised patches. These findings imply that cytoplasmic factors in addition to intracellular calcium are involved in regulation of the chloride conductance. The chloride currents could be blocked by niflumic acid or flufenamic acid with IC50s of 3 and 7 microM, or by higher concentrations of SITS (IC50 = 170 microM), DIDS (IC50 = 50 microM), or 9-anthracene carboxylic acid (IC50 = 80 microM). The chloride conductance activated in whole cell by intracellular calcium had the permeability sequence PNOS > PI > PBr > PCl > Paspartate, measured from either reversal potentials or conductances. Instantaneous current-voltage relations for the calcium-activated chloride currents were linear in symmetric chloride solutions. Much of the current was time and voltage independent and active at all membrane potentials between -100 and +100 mV, but an additional component of variable amplitude showed time-dependent activation with depolarization. Volume-sensitive chloride currents were also present in brown fat cells, but differed from the calcium-activated currents in that they responded to cell swelling, required intracellular ATP in whole-cell recordings, showed no sensitivity to intracellular or extracellular calcium levels, and were relatively resistant to block by niflumic and flufenamic acids. (ABSTRACT TRUNCATED AT 400 WORDS)


1998 ◽  
Vol 112 (2) ◽  
pp. 199-210 ◽  
Author(s):  
Tatyana T. Ivanova-Nikolova ◽  
Emil N. Nikolov ◽  
Carl Hansen ◽  
Janet D. Robishaw

The membrane-delimited activation of muscarinic K+ channels by G protein βγ subunits plays a prominent role in the inhibitory synaptic transmission in the heart. These channels are thought to be heterotetramers comprised of two homologous subunits, GIRK1 and CIR, both members of the family of inwardly rectifying K+ channels. Here, we demonstrate that muscarinic K+ channels in neonatal rat atrial myocytes exhibit four distinct gating modes. In intact myocytes, after muscarinic receptor activation, the different gating modes were distinguished by differences in both the frequency of channel opening and the mean open time of the channel, which accounted for a 76-fold increase in channel open probability from mode 1 to mode 4. Because of the tetrameric architecture of the channel, the hypothesis that each of the four gating modes reflects binding of a different number of Gβγ subunits to the channel was tested, using recombinant Gβ1γ5. Gβ1γ5 was able to control the equilibrium between the four gating modes of the channel in a manner consistent with binding of Gβγ to four equivalent and independent sites in the protein complex. Surprisingly, however, Gβ1γ5 lacked the ability to stabilize the long open state of the channel that is responsible for the augmentation of the mean open time in modes 3 and 4 after muscarinic receptor stimulation. The modal regulation of muscarinic K+ channel gating by Gβγ provides the atrial cells with at least two major advantages: the ability to filter out small inputs from multiple membrane receptors and yet the ability to create the gradients of information necessary to control the heart rate with great precision.


1991 ◽  
Vol 98 (5) ◽  
pp. 921-939 ◽  
Author(s):  
M A Wallert ◽  
M J Ackerman ◽  
D Kim ◽  
D E Clapham

Two K(+)-selective channels in neonatal rat atrial cells activated by lipophilic compounds have been characterized in detail. The arachidonic acid-stimulated channel (IK.AA) had a slope conductance of 124 +/- 17 pS at +30 mV in symmetrical 140 mM potassium and a mean open time of approximately 1 ms, and was relatively voltage independent. IK.AA activity was reversibly increased by lowering pH to 6.0. Arachidonic acid was most effective in activating this channel, although a number of lipophilic compounds resulted in activation. Surprisingly, choline, a polar molecule, also activated the channel. A second K+ channel was activated by 10 microM phosphatidylcholine applied to the intracellular surface of inside-out atrial patches. This channel (IK.PC) had a slope conductance of 60 +/- 6 pS at +40 mV and a mean open time of approximately 0.6 ms, and was also relatively voltage independent. Fatty acids are probably monomeric in the membrane under the conditions of our recording; thus detergent effects are unlikely. Since a number of compounds including fatty acids and prostaglandins activated these two channels, an indirect, channel-specific mechanism may account for activation of these two cardiac K+ channels.


2000 ◽  
Vol 279 (5) ◽  
pp. E963-E977 ◽  
Author(s):  
Ari Koivisto ◽  
Detlef Siemen ◽  
Jan Nedergaard

The nature of the sustained norepinephrine-induced depolarization in brown fat cells was examined by patch-clamp techniques. Norepinephrine (NE) stimulation led to a whole cell current response consisting of two phases: a first inward current, lasting for only 1 min, and a sustained inward current, lasting as long as the adrenergic stimulation was maintained. The nature of the sustained current was here investigated. It could be induced by the α1-agonist cirazoline but not by the β3-agonist CGP-12177A. Reduction of extracellular Cl− concentration had no effect, but omission of extracellular Ca2+ or Na+ totally eliminated it. When unstimulated cells were studied in the cell-attached mode, some activity of ≈30 pS nonselective cation channels was observed. NE perfusion led to a 10-fold increase in their open probability (from ≈0.002 to ≈0.017), which persisted as long as the perfusion was maintained. The activation was much stronger with the α1-agonist phenylephrine than with the β3-agonist CGP-12177A, and with the Ca2+ionophore A-23187 than with the adenylyl cyclase activator forskolin. We conclude that the sustained inward current was due to activation of ≈30 pS nonselective cation channels via α1-adrenergic receptors and that the effect may be mediated via an increase in intracellular free Ca2+ concentration.


Sign in / Sign up

Export Citation Format

Share Document