Effect of purinergic blockers on outward current in isolated smooth muscle cells of the sheep bladder

1996 ◽  
Vol 270 (3) ◽  
pp. C969-C973 ◽  
Author(s):  
K. D. Cotton ◽  
M. A. Hollywood ◽  
K. D. Thornbury ◽  
N. G. McHale

Freshly dispersed cells from sheep urinary bladder were voltage clamped using the whole cell and inside-out patch-clamp technique. Cibacron and Basilen blue increased outward current in a dose-dependent manner with a half-maximal response at 10(-5)M. Suramin, in concentrations to 10(-3)M, had no such effect. The Cibacron blue response was abolished in Ca2+ -free physiological salt solution, suggesting that it was acting on a Ca2+ -dependent current. Similarly, the Cibacron blue-sensitive current was significantly attenuated by charybdotoxin. Cibacron blue did not modulate inward current nor were its effects modified by caffeine or heparin, suggesting that its effect on outward current was not secondary to an increase in intracellular Ca2+. Application of 10(-4)M Cibacron blue to the inside membrane of excised patches caused a rapid increase in open probability of a large conductance (300 pS) K+ channel. These results suggest that Cibacron blue is a potent activator of a Ca2+ -dependent outward current in bladder smooth muscle cells in addition to its action as a purinergic blocker.

1985 ◽  
Vol 249 (3) ◽  
pp. E292-E298
Author(s):  
N. Kaiser ◽  
A. Tur-Sinai ◽  
M. Hasin ◽  
E. Cerasi

The interaction of insulin with the vascular smooth muscle was studied using cultures derived from the bovine aortic arch. The cultured cells exhibited specific binding of 125I-insulin that was reversible and dependent on pH. Both insulin and insulinlike growth factor (IGF) I competed for 125I-insulin binding; IGF I, however, was less effective than insulin by at least an order of magnitude. Insulin binding was accompanied by internalization and degradation of the hormone in a temperature- and time-dependent manner. Chloroquine and other lysosomotropic agents elevated the internalized insulin and reduced its degradation. Pre-exposure of cell cultures to insulin resulted in downregulation of cell surface receptors. Insulin stimulated alpha-aminoisobutyric acid transport in confluent smooth muscle cells. The maximal response was observed at 100 ng/ml insulin with a half-maximal effect at 10 ng/ml. Sparse, serum-starved smooth muscle cells responded to insulin with a dose-dependent increase in [3H]-thymidine incorporation into DNA. Although the effect was already apparent at 1 ng/ml insulin, it reached near maximal level only at 10,000 ng/ml. IGF I also stimulated DNA synthesis in smooth muscle cells; however, at low concentrations insulin was more efficient in this respect. Human growth hormone was inactive. The data indicate the presence of specific receptors for insulin in bovine aortic smooth muscle cells. These receptors appear to mediate the metabolic activity as well as part of the mitogenic effect of insulin in these cells.


2005 ◽  
Vol 288 (4) ◽  
pp. G832-G841 ◽  
Author(s):  
Yukari Takeda ◽  
Sean M. Ward ◽  
Kenton M. Sanders ◽  
Sang Don Koh

In the tunica muscularis of the gastrointestinal (GI) tract, gap junctions form low-resistance pathways between pacemaker cells known as interstitial cells of Cajal (ICCs) and between ICC and smooth muscle cells. Coupling via these junctions facilitates electrical slow-wave propagation and responses of smooth muscle to enteric motor nerves. Glycyrrhetinic acid (GA) has been shown to uncouple gap junctions, but previous studies have shown apparent nonspecific effects of GA in a variety of tissues. We tested the effects of GA using isometric force measurements, intracellular microelectrode recordings, the patch-clamp technique, and the spread of Lucifer yellow within cultured ICC networks. In murine small intestinal muscles, β-GA (10 μM) decreased phasic contractions and depolarized resting membrane potential. Preincubation of GA inhibited the spread of Lucifer yellow, increased input resistance, and decreased cell capacitance in ICC networks, suggesting that GA uncoupled ICCs. In patch-clamp experiments of isolated jejunal myocytes, GA significantly decreased L-type Ca2+ current in a dose-dependent manner without affecting the voltage dependence of this current. The IC50 for Ca2+ currents was 1.9 μM, which is lower than the concentrations used to block gap junctions. GA also significantly increased large-conductance Ca2+-activated K+ currents but decreased net delayed rectifier K+ currents, including 4-aminopyridine and tetraethylammonium-resistant currents. In conclusion, the reduction of phasic contractile activity of GI muscles by GA is likely a consequence of its inhibitory effects on gap junctions and voltage-dependent Ca2+ currents. Membrane depolarization may be a consequence of uncoupling effects of GA on gap junctions between ICCs and smooth muscles and inhibition of K+ conductances in smooth muscle cells.


1991 ◽  
Vol 260 (5) ◽  
pp. C1012-C1018 ◽  
Author(s):  
F. Vogalis ◽  
N. G. Publicover ◽  
J. R. Hume ◽  
K. M. Sanders

We measured free intracellular Ca2+ concentration ([Ca2+]i) and Ca2+ current (ICa) simultaneously in voltage-clamped, indo-1-loaded smooth muscle cells isolated from the circular layer of the canine antrum. Resting [Ca2+]i averaged 144 +/- 20 nM in cells held at -70 mV. Depolarization positive to -50 mV elicited ICa and increased [Ca2+]i. Peak [Ca2+]i occurred between 0 and +10 mV and averaged 372 +/- 48 nM. On repolarization, [Ca2+]i decreased slowly (time constant 2-3 s) and the rate depended on the magnitude of [Ca2+]i. Cells were also voltage clamped with protocols that mimicked the upstroke and plateau phases of slow waves. With simulated plateau potentials of -55 to -45 mV, [Ca2+]i increased transiently as a result of the small transient ICa elicited by the upstroke depolarization. Sustained ICa was of sufficient magnitude with plateau depolarizations positive to -40 mV to cause a secondary rise in [Ca2+]i throughout the plateau phase. These data suggest that at the plateau potential of slow waves in situ, ICa is sufficient to cause a sustained increase in [Ca2+]i. The resulting accumulation of Ca2+ may couple the slow wave plateau to contraction and may increase the open probability of Ca(2+)-activated K channels. The latter may provide the outward current necessary to initiate repolarization.


1996 ◽  
Vol 271 (6) ◽  
pp. H2462-H2468 ◽  
Author(s):  
T. Kleppisch ◽  
B. Winter ◽  
M. T. Nelson

Organ cultures of arteries have been used to study growth responses, proliferation, and contractility. However, the function of specific-ion channels in cultured arteries has not been investigated. ATP-sensitive K+ (KATP) channels play an important role in the control of arterial tone. The goal of this study was to determine the functional state of KATP channels in arteries kept in culture. Segments from rabbit mesenteric arteries were cultured in for 2-7 days. To explore the properties of KATP channels, the effects of KATP-channel modulators and other vasoactive substances on isometric force, density, and modulation of KATP currents in single smooth muscle cells isolated from cultured vessels were examined. Isometric contractions were measured with a resistance-vessel myograph. Whole cell KATP currents were recorded with the patch-clamp technique. Membrane capacitance and KATP-current density in single smooth muscle cells from freshly dissected (control) and cultured arteries were not altered. At -60 mV, glibenclamide-sensitive currents in the presence of the K(+)-channel opener pinacidil were -4.7 +/- 1.2, -4.7 +/- 0.6, and -4.6 +/- 0.7 pA/pF for control and 2- and 4-day arteries, respectively. Inhibitory modulation of KATP currents in arterial smooth muscle also remained intact for 4 days in culture; the vasoconstrictor histamine (10 microM) reduced glibenclamide-sensitive currents in the presence of pinacidil by 61.2 +/- 2.8, 42.4 +/- 10.1, and 41.2 +/- 6.1% for control and 2- and 4-day arteries, respectively. Pinacidil relaxed control and cultured arteries (1-7 days) in a dose-dependent manner. Half-maximal effective concentrations of pinacidil were 0.42, 0.24, 0.23, and 0.51 microM for control and 2-, 4-, and 7-day arteries, respectively, whereas maximal relaxations to pinacidil were 62.9, 47.5, 37.5, and 55.7% for control and 2-, 5-, and 7-day arteries, respectively. Histamine, norepinephrine, and serotonin constricted cultured arteries, although responses to histamine and norepinephrine diminished by 30-50% after 5 days in culture. The relaxant effect of acetylcholine was not maintained in cultured arteries. Sodium nitroprusside, however, effectively relaxed arteries cultured for 2-7 days. The data indicate that with the culture model described, KATP channels in arterial smooth muscle remained functional and contractile responses in arterial segments were maintained for up to 7 days. These results suggest that this approach can be used to study either long-term regulation of KATP channels or the role of this channel type in growth responses.


2021 ◽  
pp. 437-446
Author(s):  
Q CHEN ◽  
Z JIANG ◽  
J ZHANG ◽  
L CAO ◽  
Z CHEN

Gastrointestinal motility was disturbed in W/Wv, which were lacking of interstitial cells of Cajal (ICC). In this study, we have investigated the role of arecoline hydrobromide (AH) on smooth muscle motility in the jejunum of W/Wv and wild-type (WT) mice. The jejunum tension was recorded by an isometric force transducer. Intracellular recording was used to identify whether AH affects slow wave and resting membrane potential (RMP) in vitro. The whole-cell patch clamp technique was used to explore the effects of AH on voltage-dependent potassium channels for jejunum smooth muscle cells. AH enhanced W/Wv and WT jejunum contractility in a dose-dependent manner. Atropine and nicardipine completely blocked the excitatory effect of AH in both W/Wv and WT. TEA did not reduce the effect of AH in WT, but was sufficient to block the excitatory effect of AH in W/Wv. AH significantly depolarized the RMP of jejunum cells in W/Wv and WT. After pretreatment with TEA, the RMP of jejunum cells indicated depolarization in W/Wv and WT, but subsequently perfused AH had no additional effect on RMP. AH inhibited the voltage-dependent K+ currents of acutely isolated mouse jejunum smooth muscle cells. Our study demonstrate that AH enhances the contraction activity of jejunum smooth muscle, an effect which is mediated by voltage-dependent potassium channels that acts to enhance the excitability of jejunum smooth muscle cells in mice.


1992 ◽  
Vol 133 (3) ◽  
pp. 405-NP ◽  
Author(s):  
J. Liu ◽  
R. M. Haigh ◽  
C. T. Jones

ABSTRACT Glucocorticoids are known to regulate the contractility of vascular smooth muscle by increasing its response to noradrenaline. The molecular mechanisms for achieving this remain unclear. Recent results in our laboratory have demonstrated that glucocorticoids affect both α1-adrenoceptor number and coupling to G proteins. Whether this leads to an increase in second-messenger production has to be established. The present experiments, therefore, report the effects of dexamethasone on inositol polyphosphate production in vascular smooth muscle cells in culture. Noradrenaline induced the release of inositol polyphosphates from prelabelled [3H]inositol phosphoinositides in the membrane in a dose-dependent manner. The concentration of noradrenaline which caused half-maximal response was 1·26 μmol/l. Prazosin inhibited noradrenaline-induced inositol monophosphate formation to 10·26 ± 3·67% (mean ± s.e.m.; P < 0·01, n = 5) of control value whereas yohimbine reduced it to only 61·74 ± 11·82% (P < 0·05, n = 5), suggesting an action primarily through α1-adrenergic receptors. Dexamethasone (100 nmol/l, 48 h) enhanced noradrenaline-induced inositol monophosphate, bisphosphate and trisphosphate formation up to twofold (P < 0·001, n = 5). The enhancement of the response occurred despite the fact that dexamethasone reduced [3H]inositol prelabelling of membrane phosphoinositides by 49·5 ± 9·9% (P < 0·05, n = 3). The present results suggest that the potential action of glucocorticoids on vascular smooth muscle contractility is, at least in part, through controlling α1-adrenoceptor-mediated second-messenger production. Journal of Endocrinology (1992) 133, 405–411


1995 ◽  
Vol 268 (2) ◽  
pp. L187-L191 ◽  
Author(s):  
M. Yamakage ◽  
C. A. Hirshman ◽  
T. L. Croxton

The relaxation of airway smooth muscle by volatile anesthetics is associated with a decreased concentration of intracellular free Ca2+. We hypothesized that inhibition of the entry of extracellular Ca2+ contributes to the relaxation. We therefore examined the effects of halothane, isoflurane, and sevoflurane on macroscopic voltage-activated Ca2+ currents (ICa) in porcine tracheal smooth muscle cells, using the whole cell patch-clamp technique. All three volatile anesthetics significantly inhibited ICa in a dose-dependent manner with no apparent shift in the voltage dependence of induced ICa. The order of inhibitory potencies for ICa was halothane < isoflurane < sevoflurane. When data were plotted as a function of the estimated anesthetic concentrations in the lipid phase, the potencies for inhibition of ICa by the three anesthetics were indistinguishable. We conclude that volatile anesthetics have an inhibitory effect on ICa of porcine tracheal smooth muscle cells at clinically relevant concentrations and that the inhibitory potencies of volatile anesthetics on ICa are closely related to their lipid-phase solubilities.


2011 ◽  
Vol 301 (5) ◽  
pp. C1186-C1200 ◽  
Author(s):  
B. Kyle ◽  
E. Bradley ◽  
S. Ohya ◽  
G. P. Sergeant ◽  
N. G. McHale ◽  
...  

We have characterized the native voltage-dependent K+ (Kv) current in rabbit urethral smooth muscle cells (RUSMC) and compared its pharmacological and biophysical properties with Kv2.1 and Kv2.2 channels cloned from the rabbit urethra and stably expressed in human embryonic kidney (HEK)-293 cells (HEKKv2.1 and HEKKv2.2). RUSMC were perfused with Hanks′ solution at 37°C and studied using the patch-clamp technique with K+-rich pipette solutions. Cells were bathed in 100 nM Penitrem A (Pen A) to block large-conductance Ca2+-activated K+ (BK) currents and depolarized to +40 mV for 500 ms to evoke Kv currents. These were unaffected by margatoxin, κ-dendrotoxin, or α-dendrotoxin (100 nM, n = 3–5) but were blocked by stromatoxin-1 (ScTx, IC50 ∼130 nM), consistent with the idea that the currents were carried through Kv2 channels. RNA was detected for Kv2.1, Kv2.2, and the silent subunit Kv9.3 in urethral smooth muscle. Immunocytochemistry showed membrane staining for both Kv2 subtypes and Kv9.3 in isolated RUSMC. HEKKv2.1 and HEKKv2.2 currents were blocked in a concentration-dependent manner by ScTx, with estimated IC50 values of ∼150 nM (Kv2.1, n = 5) and 70 nM (Kv2.2, n = 6). The mean half-maximal voltage ( V1/2) of inactivation of the USMC Kv current was −56 ± 3 mV ( n = 9). This was similar to the HEKKv2.1 current (−55 ± 3 mV, n = 13) but significantly different from the HEKKv2.2 currents (−30 ± 3 mV, n = 11). Action potentials (AP) evoked from RUSMC studied under current-clamp mode were unaffected by ScTx. However, when ScTx was applied in the presence of Pen A, the AP duration was significantly prolonged. Similarly, ScTx increased the amplitude of spontaneous contractions threefold, but only after Pen A application. These data suggest that Kv2.1 channels contribute significantly to the Kv current in RUSMC.


1995 ◽  
Vol 269 (3) ◽  
pp. G378-G385 ◽  
Author(s):  
Z. Xiong ◽  
N. Sperelakis ◽  
A. Noffsinger ◽  
C. Fenoglio-Preiser

Voltage-gated Ca2+ currents were investigated in single smooth muscle cells freshly isolated from the circular layer of the human colon (ascending and descending portions) using the whole cell voltage-clamp technique. Tissue samples were obtained at the time of therapeutic surgery. In physiological salt solution (containing 2 mM Ca2+), an inward current was observed when the cell membrane was depolarized in the presence of tetrodotoxin. This current disappeared when Ca2+ was removed from the bath solution and was inhibited when Ca2+ channel blockers were applied, indicating that the inward current was a Ca2+ current (ICa). Changing the holding potential (HP) from -100 mV to more positive potentials (e.g., -60 and -40 mV) markedly decreased the amplitude of ICa. The voltage dependence of steady-state activation and inactivation was represented by Boltzmann distributions; there was a substantial amount of overlap (window current) between -60 and -10 mV. A fast-inactivating ICa component followed by a slow-inactivating ICa component was observed in some cells from both ascending and descending colons. The fast ICa component was observed only when cells were held at -80 or -100 mV, and had a more negative threshold potential (-70 to -60 mV). This component was sensitive to low concentrations of Ni2+ (30 microM) but was resistant to nifedipine (10-20 microM). In contrast, the slow (sustained) ICa component was observed at all HPs (-40 to -100 mV) and had a more positive threshold potential (about -40 mV). This component was insensitive to low concentration of Ni2+ but was sensitive to nifedipine and BAY K 8644.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 260 (5) ◽  
pp. H1713-H1717 ◽  
Author(s):  
U. Ikeda ◽  
M. Ikeda ◽  
T. Oohara ◽  
A. Oguchi ◽  
T. Kamitani ◽  
...  

We have investigated the effect of interleukin 6 (IL-6) on the growth of vascular smooth muscle cells (VSMC) isolated from rat aortas. Murine recombinant IL-6 significantly increased the number of VSMC and stimulated tritiated thymidine incorporation into VSMC in a dose-dependent manner. The IL-6-induced thymidine incorporation into VSMC was totally inhibited by the Ca2+ channel blocker verapamil; however, IL-6 showed no effects on the intracellular Ca2+ level ([Ca2+]i) in VSMC. Antibody against platelet-derived growth factor (PDGF) also totally inhibited the IL-6-induced thymidine uptake. PDGF caused a significant increase in the [Ca2+]i, which was totally inhibited by verapamil. IL-6 mRNA was not detected in unstimulated “quiescent” VSMC, but its expression was stimulated by exposure of VSMC to 10% fetal bovine serum. Immunohistochemical study using anti-PDGF antibody showed that IL-6 stimulated PDGF production in VSMC. These results support the premise that IL-6 is released by VSMC in an autocrine manner and promotes the growth of VSMC via induction of endogenous PDGF production.


Sign in / Sign up

Export Citation Format

Share Document