Role of actin in regulation of epithelial sodium channels by CFTR

1997 ◽  
Vol 272 (4) ◽  
pp. C1077-C1086 ◽  
Author(s):  
I. I. Ismailov ◽  
B. K. Berdiev ◽  
V. G. Shlyonsky ◽  
C. M. Fuller ◽  
A. G. Prat ◽  
...  

Cystic fibrosis (CF) airway epithelia exhibit enhanced Na+ reabsorption in parallel with diminished Cl- secretion. We tested the hypothesis that actin plays a role in the regulation of a cloned epithelial Na+ channel (ENaC) by the cystic fibrosis transmembrane conductance regulator (CFTR). We found that immunopurified bovine tracheal CFTR coreconstituted into a planar lipid bilayer with alpha,beta,gamma-rat ENaC (rENaC) decreased single-channel open probability (Po) of rENaC in the presence of actin by over 60%, a significantly greater effect than was observed in the absence of actin (approximately 20%). In the presence of actin, protein kinase A plus ATP activated both CFTR and rENaC, but CFTR was activated in a sustained manner, whereas the activation of rENaC was transitory. ATP alone could also activate ENaC transiently in the presence ofactin but had no effect on CFTR. Stabilizing short actin filaments at a fixed length with gelsolin (at a ratio to actin of 2:1) produced a sustained activation of alpha,beta,gamma-rENaC in both the presence or absence of CFTR. Gelsolin alone (i.e., in the absence of actin) had no effect on the conductance or Po of either CFTR or rENaC. We have also found that short actin filaments produced their modulatory action on alpha-rENaC independent of the presence of the beta- or gamma-rENaC subunits. In contrast, CFTR did not affect any properties of the channel formed by alpha-rENaC alone, i.e., in the absence of beta- or gamma-rENaC. These results indicate that CFTR can directly downregulate single Na+ channel activity, which may account for the observed differences between Na+ transport in normal and CF-affected airway epithelia. Moreover, the presence of actin confers an enhanced modulatory ability of CFTR on Na+ channels.

2018 ◽  
Vol 315 (5) ◽  
pp. L846-L857 ◽  
Author(s):  
Yiting Wang ◽  
Zhiwei Cai ◽  
Martin Gosling ◽  
David N. Sheppard

Ivacaftor is the first drug to target directly defects in the cystic fibrosis transmembrane conductance regulator (CFTR), which causes cystic fibrosis (CF). To understand better how ivacaftor potentiates CFTR channel gating, here we investigated the effects of temperature on its action. As a control, we studied the benzimidazolone UCCF-853, which potentiates CFTR by a different mechanism. Using the patch-clamp technique and cells expressing recombinant CFTR, we studied the single-channel behavior of wild-type and F508del-CFTR, the most common CF mutation. Raising the temperature of the intracellular solution from 23 to 37°C increased the frequency but reduced the duration of wild-type and F508del-CFTR channel openings. Although the open probability ( Po) of wild-type CFTR increased progressively as temperature was elevated, the relationship between Po and temperature for F508del-CFTR was bell-shaped with a maximum Po at ~30°C. For wild-type CFTR and to a greatly reduced extent F508del-CFTR, the temperature dependence of channel gating was asymmetric with the opening rate demonstrating greater temperature sensitivity than the closing rate. At all temperatures tested, ivacaftor and UCCF-853 potentiated wild-type and F508del-CFTR. Strikingly, ivacaftor but not UCCF-853 abolished the asymmetric temperature dependence of CFTR channel gating. At all temperatures tested, Po values of wild-type CFTR in the presence of ivacaftor were approximately double those of F508del-CFTR, which were equivalent to or greater than those of wild-type CFTR at 37°C in the absence of the drug. We conclude that the principal effect of ivacaftor is to promote channel opening to abolish the temperature dependence of CFTR channel gating.


2016 ◽  
pp. 505-515
Author(s):  
F. QIAN ◽  
L. LIU ◽  
Z. LIU ◽  
C. LU

The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel contains 12 transmembrane (TM) regions that are presumed to form the channel pore. However, there is no direct evidence clearly illustrating the involvement of these transmembrane regions in the actual CFTR pore structure. To obtain insight into the architecture of the CFTR channel pore, we used patch clamp recording techniques and a strategy of co-mutagenesis of two potential pore-forming transmembrane regions (TM1 and TM6) to investigate the collaboration of these two TM regions. We performed a range of specific functional assays comparing the single channel conductance, anion binding, and anion selectivity properties of the co-mutated CFTR variants, and the results indicated that TM1 and TM6 play vital roles in forming the channel pore and, thus, determine the functional properties of the channel. Furthermore, we provided functional evidence that the amino acid threonine (T338) in TM6 has synergic effects with lysine (K95) in TM1. Therefore, we propose that these two residues have functional collaboration in the CFTR channel pore and may collectively form a selective filter.


2004 ◽  
Vol 287 (5) ◽  
pp. C1256-C1263 ◽  
Author(s):  
Yongyue Chen ◽  
Guillermo A. Altenberg ◽  
Luis Reuss

PKA-mediated phosphorylation of the regulatory (R) domain plays a major role in the activation of the human cystic fibrosis transmembrane conductance regulator (hCFTR). In contrast, the effect of PKC-mediated phosphorylation is controversial, smaller than that of PKA, and dependent on the cell type. In the present study, we expressed Xenopus CFTR ( XCFTR) and hCFTR in Xenopus oocytes and examined their responses (i.e., macroscopic membrane conductance) to maximal stimulation by PKC and PKA agonists. With XCFTR, the average response to PKC was approximately sixfold that of PKA stimulation. In contrast, with hCFTR, the response to PKC was ∼90% of the response to PKA stimulation. The reason for these differences was the small response of XCFTR to PKA stimulation. Using the substituted cysteine accessibility method, we found no evidence for insertion of functional CFTR channels in the plasma membrane in response to PKC stimulation. The increase in macroscopic conductance in response to PKC stimulation of XCFTR was due to an approximately fivefold increase in single-channel open probability, with a minor (∼30%) increase in single-channel conductance. The responses of XCFTR to PKC stimulation and of hCFTR to PKA stimulation were mediated by similar increases in Po. In both instances, there were no changes in the number of channels in the membrane. We speculate that in animals other than humans, PKC stimulation may be the dominant mechanism for activation of CFTR.


2015 ◽  
Vol 112 (14) ◽  
pp. 4435-4440 ◽  
Author(s):  
Hong-Mei Guo ◽  
Jiang-Mei Gao ◽  
Yu-Li Luo ◽  
Yan-Zi Wen ◽  
Yi-Lin Zhang ◽  
...  

The airway epithelia initiate and modulate the inflammatory responses to various pathogens. The cystic fibrosis transmembrane conductance regulator-mediated Cl− secretion system plays a key role in mucociliary clearance of inhaled pathogens. We have explored the effects of Toxoplasma gondii, an opportunistic intracellular protozoan parasite, on Cl− secretion of the mouse tracheal epithelia. In this study, ATP-induced Cl− secretion indicated the presence of a biphasic short-circuit current (Isc) response, which was mediated by a Ca2+-activated Cl− channel (CaCC) and the cystic fibrosis transmembrane conductance regulator. However, the ATP-evoked Cl− secretion in T. gondii-infected mouse tracheal epithelia and the elevation of [Ca2+]i in T. gondii-infected human airway epithelial cells were suppressed. Quantitative reverse transcription–PCR revealed that the mRNA expression level of the P2Y2 receptor (P2Y2-R) increased significantly in T. gondii-infected mouse tracheal cells. This revealed the influence that pathological changes in P2Y2-R had on the downstream signal, suggesting that P2Y2-R was involved in the mechanism underlying T. gondii infection in airways. These results link T. gondii infection as well as other pathogen infections to Cl− secretion, via P2Y2-R, which may provide new insights for the treatment of pneumonia caused by pathogens including T. gondii.


1993 ◽  
Vol 71 (9) ◽  
pp. 645-649 ◽  
Author(s):  
Xiaodong Wang ◽  
Yoshinori Marunaka ◽  
Ludwik Fedorko ◽  
Sascha Dho ◽  
J. Kevin Foskett ◽  
...  

The Cl− conductance of a mouse fibroblast cell line (LTK− cells) that was stably transfected with the human CFTR (cystic fibrosis transmembrane conductance regulator) complementary DNA was studied. Single Cl− channel activity was observed only after treatment of the cells with forskolin, the single-channel conductance being 6.2 ± 0.2 pS with a linear current–voltage relationship. In CFTR+ cells, the whole-cell current at +90 mV increased from 7.3 ± 2.7 pA/pF (n = 12) to 46.1 ± 11.2 pA/pF (n = 5) after addition of dibutyryl-cyclic AMP (10−4 M) to the bath. Increasing the intracellular Cl− concentration to 150 mM activated linear Cl− currents in the absence of cyclic AMP in CFTR+ (n = 42) but not in CFTR− cells (n = 4). Similar Cl− current was also activated by high intracellular I− concentration. These results indicate that the CFTR-induced Cl− conductance in LTK− cells can be activated by either cyclic AMP or high intracellular halide concentrations.Key words: cystic fibrosis transmembrane conductance regulator (CFTR), chloride channel, cyclic AMP, whole-cell patch clamp, single-channel patch clamp.


Sign in / Sign up

Export Citation Format

Share Document