Odor suppression of voltage-gated currents contributes to the odor-induced response in olfactory neurons

1999 ◽  
Vol 277 (6) ◽  
pp. C1086-C1099 ◽  
Author(s):  
Magdalena Sanhueza ◽  
Juan Bacigalupo

Olfactory chemotransduction involves a signaling cascade. In addition to triggering transduction, odors suppress ion conductances. By stimulating with brief odorant pulses, we observed a current associated with odor-induced suppression of voltage-gated conductances and studied its time dependence. We characterized this suppression current in isolated Caudiverbera caudiverberaolfactory neurons. All four voltage-gated currents are suppressed by odor pulses in almost every neuron, and suppression is caused by odors inducing excitation and by those inducing inhibition, indicating a nonselective phenomenon, in contrast to transduction. Suppression has a 10-fold shorter latency than transduction. Suppression was more pronounced when odors were applied to the soma than to the cilia, opposite to transduction. Suppression was also present in rat olfactory neurons. Furthermore, we could induce it in Drosophila photoreceptor cells, demonstrating its independence from the chemotransduction cascade. We show that odor concentrations causing suppression are similar to those triggering chemotransduction and that both suppression and transduction contribute to the odor response in isolated olfactory neurons. Furthermore, suppression affects spiking, implying a possible physiological role in olfaction.

1996 ◽  
Vol 76 (2) ◽  
pp. 816-824
Author(s):  
R. L. Wu ◽  
M. E. Barish

1. The regulation of A-current, one of several transient voltage-gated potassium currents, was studied using whole cell gigaohm seal voltage-clamp techniques on hippocampal pyramidal neurons that were either acutely dissociated from postnatal mouse brain or isolated from embryonic mouse brain and grown in dissociated culture. These neurons also express gamma-aminobutyric acid-A (GABAA) receptors, the activation of which can, under some circumstances, depolarize immature neurons and the dendrites of more mature neurons. 2. Application of GABA (50 microM) reduced the amplitude of A-current when potassium current amplitude was measured during a period of slow and incomplete desensitization of IGABA. A-current was reduced to 67 +/- 9% of control (mean +/- SD, n - 14) in acutely dissociated neurons, and to 64 +/- 11% of control (n = 15) in cultured neurons. Similar A-current reductions were seen in large outside-out membrane patches pulled from somata of cultured neurons, an observation suggesting that imperfect control of membrane voltage was not responsible for A-current inhibition. 3. A-current inhibition exhibited the sensitivity expected of a GABAA-sensitive process. It was mimicked by muscimol and blocked by bicuculline, picrotoxin, and reduction of [Cl-] in the external solution. Baclophen and phaclophen, effective as agonist and antagonist on GABAB receptors, did not affect A-currents or their inhibition. Reduction in extracellular osmolarity (to increase cell swelling as might occur with Cl- entry), or removal of external HCO3- (which might flow inward through GABAA channels and cause local external acidification), did not affect A-current or its inhibition. The mechanisms of inhibition is not clear at present. 4. We suggest that reduced A-current may favor GABA-induced depolarization and consequent activation of voltage-gated calcium channels.


2000 ◽  
Vol 150 (6) ◽  
pp. 1411-1422 ◽  
Author(s):  
Hong-Sheng Li ◽  
Craig Montell

The light response in Drosophila photoreceptor cells is mediated by a series of proteins that assemble into a macromolecular complex referred to as the signalplex. The central player in the signalplex is inactivation no afterpotential D (INAD), a protein consisting of a tandem array of five PDZ domains. At least seven proteins bind INAD, including the transient receptor potential (TRP) channel, which depends on INAD for localization to the phototransducing organelle, the rhabdomere. However, the determinants required for localization of INAD are not known. In this work, we showed that INAD was required for retention rather than targeting of TRP to the rhabdomeres. In addition, we demonstrated that TRP bound to INAD through the COOH terminus, and this interaction was required for localization of INAD. Other proteins that depend on INAD for localization, phospholipase C and protein kinase C, also mislocalized. However, elimination of any other member of the signalplex had no impact on the spatial distribution of INAD. A direct interaction between TRP and INAD did not appear to have a role in the photoresponse independent of localization of multiple signaling components. Rather, the primary function of the TRP/ INAD complex is to form the core unit required for localization of the signalplex to the rhabdomeres.


1999 ◽  
Vol 81 (4) ◽  
pp. 1749-1759 ◽  
Author(s):  
Corinna Pelz ◽  
Johannes Jander ◽  
Hendrik Rosenboom ◽  
Martin Hammer ◽  
Randolf Menzel

I A in Kenyon cells of the mushroom body of honeybees resembles shaker currents: kinetics, modulation by K+, and simulation. Cultured Kenyon cells from the mushroom body of the honeybee, Apis mellifera, show a voltage-gated, fast transient K+ current that is sensitive to 4-aminopyridine, an A current. The kinetic properties of this A current and its modulation by extracellular K+ ions were investigated in vitro with the whole cell patch-clamp technique. The A current was isolated from other voltage-gated currents either pharmacologically or with suitable voltage-clamp protocols. Hodgkin- and Huxley-style mathematical equations were used for the description of this current and for the simulation of action potentials in a Kenyon cell model. Activation and inactivation of the A current are fast and voltage dependent with time constants of 0.4 ± 0.1 ms (means ± SE) at +45 mV and 3.0 ± 1.6 ms at +45 mV, respectively. The pronounced voltage dependence of the inactivation kinetics indicates that at least a part of this current of the honeybee Kenyon cells is a shaker-like current. Deactivation and recovery from inactivation also show voltage dependency. The time constant of deactivation has a value of 0.4 ± 0.1 ms at −75 mV. Recovery from inactivation needs a double-exponential function to be fitted adequately; the resulting time constants are 18 ± 3.1 ms for the fast and 745 ± 107 ms for the slow process at −75 mV. Half-maximal activation of the A current occurs at −0.7 ± 2.9 mV, and half-maximal inactivation occurs at −54.7 ± 2.4 mV. An increase in the extracellular K+concentration increases the conductance and accelerates the recovery from inactivation of the A current, affecting the slow but not the fast time constant. With respect to these modulations the current under investigation resembles some of the shaker-like currents. The data of the A current were incorporated into a reduced computational model of the voltage-gated currents of Kenyon cells. In addition, the model contained a delayed rectifier K+ current, a Na+current, and a leakage current. The model is able to generate an action potential on current injection. The model predicts that the A current causes repolarization of the action potential but not a delay in the initiation of the action potential. It further predicts that the activation of the delayed rectifier K+ current is too slow to contribute markedly to repolarization during a single action potential. Because of its fast activation, the A current reduces the amplitude of the net depolarizing current and thus reduces the peak amplitude and the duration of the action potential.


2009 ◽  
Vol 88 (12) ◽  
pp. 765-777 ◽  
Author(s):  
Mélisande Richard ◽  
Nadine Muschalik ◽  
Ferdi Grawe ◽  
Susann Özüyaman ◽  
Elisabeth Knust

Endocrinology ◽  
2009 ◽  
Vol 150 (6) ◽  
pp. 2829-2836 ◽  
Author(s):  
C. Brad Bennett ◽  
Martin Muschol

Axons in the neurohypophysis are known for their “beads on a string” morphology, with numerous in-line secretory swellings lined up along the axon cable. A significant fraction of these secretory swellings, called Herring bodies, is large enough to serve as an identifying feature of the neural lobe in histological sections. Little is known about the physiological role such large axonal swellings might play in neuroendocrine physiology. Using numerical simulations, we have investigated whether large in-line varicosities affect the waveform and propagation of action potentials (APs) along neurohypophysial axons. Due to the strong nonlinear dependence of calcium influx on AP waveforms, such modulation would inevitably affect neuroendocrine release. The parameters for our numerical simulations were matched to established properties of voltage-gated ion channels in neurohypophysial swellings. We find that even a single in-line varicosity can severely depress AP waveforms far upstream in the axonal cable. In contrast, AP depolarization within varicosities becomes amplified. Amplification within varicosities varies in a nontrivial manner with varicosity dimensions, and is most pronounced for diameters close to those of Herring bodies. Overall, we find that large axonal varicosities significantly modulate AP waveforms and their propagation, and do so over large distances. Varicosity size is the main determinant for the observed AP amplification, with the kinetics of voltage-gated ion channels playing a noticeable but secondary role. Our results imply that large varicosities are sites of enhanced hormone release, suggesting that small and large varicosities target different neurohypophysial structures.


2019 ◽  
Author(s):  
Azadeh Laffafian ◽  
Ulrich Tepass

AbstractDrosophila photoreceptor cells (PRCs) are highly polarized epithelial cells. Their apical membrane is further subdivided into the stalk membrane and the light-sensing rhabdomere. The photo-pigment Rhodopsin1 (Rh1) localizes to the rhabdomere, whereas the apical determinant Crumbs (Crb) is enriched at the stalk membrane. The proteoglycan Eyes shut (Eys) is secreted through the apical membrane into an inter-rhabdomeral space. Rh1, Crb, and Eys are essential for PRC development, normal vision, and PRC survival. Human orthologs of all three proteins have been linked to retinal degenerative diseases. Here, we describe an RNAi-based screen examining the importance of approximately 240 trafficking-related genes in apical trafficking of Eys, Rh1, and Crb. We found 28 genes that have an effect on the localization and/or levels of these apical proteins and analyzed several factors in more detail. We show that the Arf GEF protein Sec71 is required for biosynthetic traffic of both apical and basolateral proteins, that the exocyst complex and the microtubule-based motor proteins dynein and kinesin promote the secretion of Eys and Rh1, and that Syntaxin 7/Avalanche controls the endocytosis of Rh1, Eys, and Crb.Article summeryPhotoreceptor cells (PRCs) rely on polarized vesicle trafficking to deliver key secreted and transmembrane proteins to their correct locations. Failure to do so causes defects in PRC development, function, and survival leading to retinal disease. Using the fruit fly Drosophila as a model we have identified 28 genes that are required for the trafficking of the three apical proteins Rhodopsin 1, Crumbs, and Eyes Shut. Human homologs of all three genes are associated with retinal degeneration. We characterized several genes to reveal novel mechanisms of vesicle trafficking in photoreceptor cells at different points in the biosynthetic or endocytotic pathways.


2001 ◽  
Vol 114 (18) ◽  
pp. 3219-3231 ◽  
Author(s):  
Baruch Z. Harris ◽  
Wendell A. Lim

PDZ domains are protein-protein recognition modules that play a central role in organizing diverse cell signaling assemblies. These domains specifically recognize short C-terminal peptide motifs, but can also recognize internal sequences that structurally mimic a terminus. PDZ domains can therefore be used in combination to bind an array of target proteins or to oligomerize into branched networks. Several PDZ-domain-containing proteins play an important role in the transport, localization and assembly of supramolecular signaling complexes. Examples of such PDZ-mediated assemblies exist in Drosophila photoreceptor cells and at mammalian synapses. The predominance of PDZ domains in metazoans indicates that this highly specialized scaffolding module probably evolved in response to the increased signaling needs of multicellular organisms.


Sign in / Sign up

Export Citation Format

Share Document